

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2019/2020 ACADEMIC YEAR SECOND YEAR SECOND SEMESTER

SPECIAL/SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE: MAP 211/MAT 201/MAT 212

COURSE TITLE: LINEAR ALGEBRA I

DATE: 11/02/2021

TIME: 8 AM- 10 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and any other TWO Questions

TIME: 2 Hours

QUESTION ONE (30 MARKS)

a) Consider the system of equations

$$a_1x_1 + b_1x_2 = c_1$$

$$a_2x_1 + b_2x_2 = c_2$$

$$a_3x_1 + b_3x_2 = c_3$$

Discuss the relative positions of the above three lines when

- (i) the system has no solutions, (2 marks)
- (ii) the system has exactly one solution, (2 marks)
- (iii) the system has infinitely many solutions. (2 marks)
- b) Solve the following linear system using elementary row operations on the augmented Matrix (6 marks)

$$x_1 - 2x_2 + x_3 = 0$$

$$2x_2 - 8x_3 = 8$$

$$-4x_1 + 5x_2 + 9x_3 = -9$$

- c) Let T: $IR^2 \rightarrow IR^3$ be given by T(x,y)=(x,y,1). Show that T is not linear (3 marks)
- d) Show that if u is a non-zero vector then the length of the vector <u>u</u> is 1

 ||u||

 (5 marks)
- a) Given that $\mathbf{u} = (1,1,3)$ and $\mathbf{w} = (3,1,2)$, find
 - i) \mathbf{u}_1 , the projection of \mathbf{u} onto \mathbf{w} (5 marks)
 - ii) \mathbf{u}_2 , the perpendicular vector to \mathbf{w} (3 marks)
- b) Find the standard matrix of T: $IR^3 \rightarrow IR^2$ defined by (2 marks)

$$T y = \begin{pmatrix} x \\ y = \begin{pmatrix} x - 2y + z \\ x - y \end{pmatrix}$$

QUESTION TWO (20 MARKS)

- a) Given a vector $\mathbf{v} = (a, b, c,)$ in IR³
 - i) Show that $\cos \alpha = \underline{a}$

 $\|\mathbf{v}\|$

(2 marks)

- ii) Find $\cos \beta$ (2 marks)
- iii) Find $\cos \gamma$ (2 marks)
- iv) Show that $\underline{\mathbf{v}} = (\cos \alpha, \cos \beta, \cos \gamma)$ $||\mathbf{v}|| \qquad (2 \text{ marks})$
- v) Show that $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$ (2 marks)
- b) Let V be a vector space, $\mathbf{u} \in V$ and α is a scalar. Prove that the following properties hold.
 - $\mathbf{i)} \quad 0\mathbf{u} = 0 \tag{2 marks}$
 - ii) $\alpha 0 = 0$ (2 marks)
 - iii) $(-1)\mathbf{u} = -\mathbf{u}$ (2 marks)
 - iv) If $\alpha \mathbf{u} = 0$ then $\alpha = 0$ or $\mathbf{u} = 0$ (4 marks)

QUESTION THREE (20 MARKS)

- a) Let $\mathbf{u} = (1, 2, 3)$, $\mathbf{v} = (2, -3, 1)$ and $\mathbf{w} = (3, 2, -1)$
- i) Find the components of the vector \mathbf{u} -3 \mathbf{u} +8 \mathbf{w} (2 marks)
- ii) Find the scalars c_1 , c_2 , c_3 such that $c_1\mathbf{u}+c_2\mathbf{v}+c_3\mathbf{w}=(6,14,-2)$ (6 marks)
- b) Let $\mathbf{u} = (2,-1,1)$, $\mathbf{v} = (1,1,2)$. Find< \mathbf{u} , $\mathbf{v} >$ and the angle between these two vectors. (3 marks)

QUESTION FOUR (20 MARKS)

- c) Given that $\mathbf{u} = (2,-1,3)$ and $\mathbf{w} = (4,-1,2)$, find
 - iii) \mathbf{u}_1 , the projection of \mathbf{u} onto \mathbf{w} (5 marks)
 - iv) \mathbf{u}_{2} , the perpendicular vector to \mathbf{w} (3 marks)
- d) Given that $\mathbf{u} = (2,-1,1)$ and $\mathbf{v} = (1,1,-1)$, show that \mathbf{u} and \mathbf{v} are orthogonal. (2 marks)
- e) If $\mathbf{u} = (1,2,-2)$ and $\mathbf{v} = (3,0,1)$ find the cross product $\mathbf{u} \times \mathbf{v}$ (5 marks)
- f) Let $\mathbf{u} = (1, 2, -2)$ and $\mathbf{v} = (3, 0, 1)$. Show that $\langle \mathbf{u}, \mathbf{u} \times \mathbf{v} \rangle$ and $\langle \mathbf{v}, \mathbf{u} \times \mathbf{v} \rangle = 0$ and hence $\mathbf{u} \times \mathbf{v}$ is orthogonal to both \mathbf{u} and \mathbf{v} . (5 marks)