

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER EXAMINATIONS (SUPPLEMENTARY/SPECIAL EXAMS)

FOR THE DEGREE OF **BACHELOR OF SCIENCE CMPUTER SCIENCE**

COURSE CODE:

MAT 212

COURSE TITLE: LINEAR ALGEBRA I

DATE:

30/9/2021

TIME: 2:00 PM - 4:00 PM

INSTRUCTIONS TO CANDIDATES

Answer question ONE (COMPULSORY) and any other TWO questions

This Paper Consists of 5 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS)

- a) Define the following terms:
 - i) Trace of matrix

(1 mk)

ii) Linear combination of a vector

iii) Transpose of a matrix

(1 mk)

(2 mks)

- iv) Vector space (2mks)
- b) Let A and B be invertible matrices. Prove that (AB)-1=B-1A-1

(3 marks)

c) Let AX=B be system of linear equation. Show that if $A^{\text{-}1}\,$ exists , the solution is unique and is given by X=A-1B

(3marks)

- d) Prove that the following transformation hT: $\mathbb{R}^2 \to \mathbb{R}^2$ is linear. T (x, y) = (2x, x + y) (4 mks)
- e) Find AB given that

$$A = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}, B = A^{\mathsf{T}}$$

(3 mks)

f) Use the row reduction formula to find the inverse of the matrix

$$A = \begin{bmatrix} 3 & 2 & 1 \\ 4 & 1 & 3 \\ 2 & 1 & 6 \end{bmatrix}$$

(8 mks)

g) Determine the basis of the matrix B below:

$$B = \begin{pmatrix} 1 & -3 & 2 \\ -2 & 6 & -4 \\ -1 & 3 & -2 \end{pmatrix}$$

(3marks)

QUESTION TWO (20 MARKS)

a) Given the matrix

$$A = \begin{bmatrix} 1 & -1 & 2 \\ -3 & 1 & 2 \\ 3 & -2 & -1 \end{bmatrix}$$

Determine:

- i) The determinant of A
- ii) The matrix of the minors
- iii) The adjoint of the co-factors of A
- iv) Inverse of A

(12mks)

Determine whether the function $f(x)=x^2+4x+5$ is a linear combination of the functions $g(x)=x^2+x-1$ and (5marks)

c) Determine the rank of the matrix

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 2 & 5 & 8 \end{bmatrix}$$
(3mks)

QUESTION THREE (20MARKS)

a) Use the Cramer's rule to solve the following system of linear equations.

$$x + y + z = 6$$

 $2x + y = 4$
 $2x + 3y + z = 11$

(10 mks)

b) Use Gaussian elimination to solve the system of equations

$$2x - y + z = 1$$

 $2x + 2y + 2z = 2$
 $-2x + 4y + z = 5$
(6mks)

c) Determine whether the set defined by the vector (a, b, 2a + 3b) Is a subspace of \mathbb{R}^3

(4 mks)

QUESTION FOUR(20MARKS)

a) If
$$A = \begin{pmatrix} 1 & 2 & 3 & 2 \\ 5 & 6 & 7 & 2 \\ 8 & 9 & 10 & 7 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 2 \\ 5 & 6 \\ 8 & 9 \\ 3 & 7 \end{pmatrix}$, Find AB (5 mks)

b) Find the determinant of matrix below by reducing it first to an upper triangular

matrix .
$$A = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \\ 2 & 1 & -1 \end{pmatrix}$$
 (5mks)

c) State (with brief explanation) whether the following statement is true or false. The vectors (1, 0, 0),

$$(0, 2, 0), (1, 2, 0) \text{ span } \mathbb{R}^3$$
 (5 mks)

d) Determine whether the vectors (1, 2, 0), (0, 1, -1), (1, 1, 2) are linearly independent in \mathbb{R}^3 (5 mks)

QUESTION FIVE (20MARKS)

- a) Express V=(1,-2,5) in \mathbb{R}^3 as a linear combination of the vectors $\mathbf{u}_1=(1,1,1)$, $\mathbf{u}_2=(1,2,3)$ and $\mathbf{u}_3=(2,-1,1)$ (6 mks)
- b) i) Define the basis of a vector space. (2 mks)
 - ii) Prove that the vectors (1, 1, 1), (0, 1, 2) and (3, 0, 1) form a basis for \mathbb{R}^3 (6 mks)

(4

- c) i) Define linear transformation. (2 mks)
 - ii) Verify for the transformation defined by the matrix $A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ that

 $A (V_1 + V_2) = A V_1 + A V_2$ mks)