

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

SECOND YEAR FIRST SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF BED (SCIENCE)

COURSE CODE:

SCH 226

COURSE TITLE: CHEMICAL THERMODYNAMICS AND PHASE

EQUILIBRA

DURATION: 2 HOURS

DATE: 18/05/2022

TIME: 2:00PM-4:00PM

INSTRUCTIONS TO CANDIDATES

Answer **QUESTION ONE** (Compulsory) and any other two (2) Questions.

Indicate answered questions on the front cover.

Start every question on a new page and make sure question's number is written on each page.

This paper consists of 3 printed pages. Please Turn Over

KIBU observes ZERO tolerance to examination cheating

QUESTION ONE (30 Marks)

a) Define the following terms as used in chemical thermodynamics

(4 marks)

- i. Exothermic process
- ii. Polymorphism
- iii.Isobaric process
- iv. A phase diagram
- b). Explain in which of the following processes whether entropy increases or decreases (3 marks)
 - i. A liquid crystallises into a solid
 - ii. Temperature of solid is raised from 0 kelvin to 220 kelvin
- c). Explain why is not possible to find the absolute value of internal energy (2 marks)
- d). Calculate the degree of freedom for the following

(4 marks)

- i. Mixture of nitrogen and oxygen gases contained in avessel
- ii. Rhombic sulphur in equilibrium with monoclinic sulphur
- e). The free energy change involved in a process is -1235 J at 300 K and -1200 J at 310 K. Calculate the change in enthalpy of the process at 306 K. (4 marks)
- f). Calculate the increase in entropy in the evaporation of 1 mole of water at 100° C. the latent heat of vaporation of water is 2.26 kJ/g (3 marks)
- h). One mole of an ideal gas at 25°C is allowed to expand reversibly at constant temperature from a volume of 20 litres to 40 litres. Calculate the work done by the gas in kilojoules. (3 marks)
- i). State the first law of thermodynamics and give the mathematical expression and state each term involved (3 marks)
- i). Distinguish between the following terms as used in chemical thermodynamics (4 marks)
 - i). Homogeneous system and Heterogeneous system
 - ii). Isothermal and adiabatic process

QUESTION TWO (20 Marks)

2 a). Derive the expression for molar heat capacities C_v and C_p in terms of internal energy change and enthalpy change hence show that C_p - C_v = R for 1mole of an Ideal gas. (14 marks)

ii. Enthalpies of formation of CO_2 (g) and H_2O (l) under standard conditions are 394.65 kJ and 285.84 kJ per mole. If the standard enthalpy of combustion of acetaldehyde (CH₃CHO) is 1167.62 kJ per mole, find its enthalpy of formation. (4 marks)

QUESTION THREE (20 Marks)

- 3 a). Draw a well labelled phase diagram of water system and discuss its salient features (10 marks)
- b). Derive the Gibbs Helmholtz equation in terms of free energy and enthalpy change at constant

 pressure.

 (10 marks)

QUESTION FOUR (20 Marks)

- 4 a). Explain the criteria for equilibrium in chemical thermodynamics. (6 marks)
- b). A Carnot engine is made to operate as a refrigerator. Explain in detail, with the aid of a pressure-volume diagram all the processes which occur during a complete cycle. (10 marks)
- c). Giving examples differentiate between Extensive and Intensive properties. (4 marks)

QUESTION FIVE (20 Marks)

- a). Give the Clapeyron equation for liquid = vapour equilibrium and write its applications and outline its parameters. (7 marks)
- b). Explain conditions under which heat and work become state function. (5 marks)
- b). A thermally insulated box is separated into two compartments (volumes V1 and V2) by a membrane. One of the compartments contains an ideal gas at temperature T; the other is empty (vacuum). The membrane is suddenly removed, and the gas fills up the two compartments and reaches equilibrium.
- i. What is the final temperature of the gas (3marks)

ii. Show that the gas expansion process is irreversible. (5marks)