

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS
2020/2021 ACADEMIC YEAR
FIRST YEAR FIRST SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF MASTER OF SCIENCE IN
APPLIED MATHEMATICS

COURSE CODE:

MAT 869

COURSE TITLE:

COMPLEX ANALYSIS I

DATE:

14/10/21

TIME: 9 AM -12 AM

INSTRUCTIONS TO CANDIDATES

Answer Any THREE Questions

TIME: 3 Hours

This Paper Consists of 2 Printed Pages. Please Turn Over.

QUESTIONONE [20 MARKS]

(a) State the following terms

- (i) Riemann mapping theorem (2 mks)
- (ii) Conformal mapping (2 mks)
- (b) Find the Laurent series about the indicated singularity for the function

$$f(z) = \frac{1}{z^2 - 3z + 2}$$
 $z < 1$ (4 mks)

- (c) Determine the linear fractional transformation that maps z = 1,0,-1 onto $w = i, \infty, 1$ respectively (6 mks)
- (d) Evaluate $\oint_C (z Re(z))dz$ C: |z| = 2 (6 mks)

QUESTION TWO [20 MARKS]

Consider the triangle A(0,0), B(2,0) and C(2,2)

- (i) Draw the triangle and its image under T(z) = (4 + 5i)z (6 + 2i) (12 mks)
- (ii) Discuss conformity of T at A(0,0) and C(2,2) (8 mks)

QUESTION THREE [20 MARKS]

- (a) If $f(z) = z^5 2z^3 + 3z + 2 i$, evaluate $\int_C \frac{f'(z)}{f(z)} dz$ where C encloses all zeros of f(z) (4 mks)
- (b) Show that $\cot^{-1}(z) = \frac{1}{2i} ln\left(\frac{z+i}{z-i}\right)$ (5 mks)
- (c) Evaluate $\int_{(0,3)}^{(2,4)} (2y + x^2) dx + (3x y) dy$
 - (i) Along the parabola x = 2t, $y = t^2 + 3$ (5 mks)
 - (ii) Straight lines from (0,2) to (3,2) and then (3,2) to (3,4) (6 mks)

QUESTION FOUR [20 MARKS]

- (a) Find the residuals of the function $f(z) = \frac{z^3 + 2}{(z^2 + 4)^2}$ (5 mks)
- (b) Evaluate $\oint_C \frac{e^{2z}}{(z-1)^5} dz$ where C is a circle |z| = 3 (5 mks)
- (c) Evaluate $\oint_{C} (6x + 5y + 7)dx + (4x 3y 2)dy$ around a triangle in the xy plane with vertices at (0,0), (3,0) and (3,2) (5 mks)
- (d) Determine the number of zeros of $z^5 6z^2 + z 1$ interior to |z| = 1 (5 mks)

QUESTION FIVE [20 MARKS]

- (a) Prove that the function $f_1(z) = \int_0^\infty 2t^3 e^{-zt} dt$ is analytic at all points of z for which Rez > 0 (6 mks)
- (b) State and prove the Rouche's theorem (14 mks)