

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR

FOURTH YEAR SECOND SEMESTER SPECIAL/SUPPLEMENTARY EXAMINATIONS

FOR THE DEGREE OF B.SC (SCIENCE)

COURSE CODE: SCH 440:

COURSE TITLE: ELECTROCHEMISTRY

DURATION: 2 HOURS

DATE: 11/1/2022 TIME: 11-1PM

INSTRUCTIONS TO CANDIDATES

Answer QUESTION ONE (Compulsory) and any other two (2) Questions.

Indicate answered questions on the front cover.

Start every question on a new page and make sure question's number is written on each page.

This paper consists of 6 printed pages. Please Turn Over

KIBU observes ZERO tolerance to examination cheating

Question One (30 Marks)

a)

 The Lead-acid cell, also called an acid accumlator has the overall spontaneous reaction below.

 $Pb_{(s)} + PbO_{2(s)} \rightarrow PbSO_{4(s)}$

- i. Write the equation of the reaction at the anode. [02]
- ii. Write the equation of the reaction at the Cathode. [02]
- iii. Differentiate between a galvanic cell and an electrolytic cell. [02]
- b) An element X has r.a.m of 88. When a current of 0.5A was passed through the fused chloride of X for 32minutes and 10 seconds, 0.44g of X was deposited at the cathode. (Use 1 Farad = 96,500 coulombs)
 - i. Calculate the quantity of electicity needed to liberate one mole of X. [04]
 - ii. Write the formular for the cation of X. [01]
 - iii. Write formular for the chloride of X. [01]

c)

- i) For a galvanic cell combining Zn and Cu, calculate the standard cell potential E° (given standard reduction potential for Zn^{2+} is -0.76V and that for Cu^{2+} is +0.34V)
- ii) Calculate the cell potential for the Zn//Cu cell at $[Zn^{2+}_{(aq)}] = 10M$ and $[Cu^{2+}_{(aq)}] = 0.1M$
- d) The oxidation and reduction half cell reactions of the following overall process exist in separate half cells.

$$Cr_2O_7^{\,2\text{-}}{}_{(aq)}\,+\,I^{\,}{}_{(aq)} \longrightarrow \ Cr^{3+}{}_{(aq)}\,+\,\,I_{2(s)}\ E^\circ=0.8254V.$$

Given the stoichiometric equation is,

$$\text{Cr}_2\text{O}_7^{2^-}\text{(aq)} + 6 \text{ } \Gamma_{\text{(aq)}} \text{ } 14\text{H}^+\text{(aq)} \rightarrow \text{ } \text{Cr}^{3^+}\text{(aq)} + 3 \text{ } I_{2(s)} + 7\text{H}_2\text{O}_{(l)} \text{ and the different concentrations are tabulated}$$
 [05]

Species	Concentration
$\operatorname{Cr}^{3+}_{(aq)}$	2.0×10^{-3}
$Cr_2O_7^{2-}(aq)$	2.0
$H^{+}_{(aq)}$	1.0
$\Gamma_{(aq)}$	1.0

e) Dichromate (VI) ions are powerful oxidising agents and are reduced to chromium III ions. This colour change was once used in 'breath test' apparatus to determine if a driver had consumed excessive alcohol. Explain the term 'redox reaction' [01]

- f) Aluminium metal is extracted from molten bauxite ($Al_2O_3.2H_2O$) using electrolysis. Cryolite (AlF_3) added to the ore in order to lower the melting point required and thus the energy required by the process.
 - i. Write an half equation to show how aluminium metal is produced from the ore. [01]
 - iv. What mass of aluminium metal would be produced if a current of 30,000A is applied to a cell for 1 hour. [04]
 - v. In the molten mixture there is a mixture of anions which mostly consists of O₂⁻ and F⁻. Write an equation to show which of these anions will be oxidised in the cell? [01]

Question two (20 Marks)

a) State Kohlrausch's law.

[01]

b) The table below shows limiting molar conductivies of common anions and cations at 298K;

Cation	Limiting molar conductivity (^° m)Scm²mol	Anion	Limiting molar conductivity (^° m)Scm²mol
H ⁺	349.6	OH.	199.1
Na ⁺	50.1	C1 ⁻	76.3
K ⁺	73.5	Br ⁻	78.1
Ca ²⁺	119.0	Ac ⁻	40.0
Mg ²⁺	106.0	SO ₄ ²⁻	160.0

Use it to answer the questions (a) and (b) that follow.

Explain the difference in conductivity between;

- i. H⁺ ion and Na⁺ ion
- ii. Na⁺ and Ca²⁺
- iii. SO_4^{2-} and OH [03]
- iv. Calculate the value of $(^{\circ}_{m})$ for CaCl₂ and MgSO₄ solutions.

[02]

- c) The limiting molar conductivity ($^{\circ}$ m) values for NaCl, HCl and NaAc are 126.4 Scm²mol⁻, 425.9 Scm²mol⁻, and 91.05 Scm²mol⁻, respectively. Use these values to calculate the value of ($^{\circ}$ m) for HAc. [03]
- d) The conductivity of $0.001028 \text{mol.L}^{-}$ acetic acid is $4.95 \times 10^{-5} \text{scm}^{-1}$. Calculate its dissociation constant if $(\land^{\circ} \text{m})_{\text{acetic acid}}$ is $390.05 \text{ Scm}^{2} \text{mol}^{-}$ [03]

e) The conductivity of sodium chloride at 298K was determined at different concentrations and the results tabulated as below.

Concentration (mol.m ⁻³)	Conductivity k x 10 ² (Sm ²⁾	Molar conductivity (\lambda m)Scm ² mol	$C^{1/2}$
0.001	1.237		
0.010	11.85		
0.020	23.15		
0.050	55.58		
0.100	106.7		

Calculate (\wedge _m) forall values of concentration given, and draw a graph between (\wedge _m) and C^{1/2}. Use the graph to find the value of \wedge ^o_m. [05]

f) Explain how using Kohlraush law one cam determine \wedge° m for distilled water. [03]

Question three (20 Marks)

b) The Nickel Cadimium cell, also called an alkaline cell has the overall spontaneous reaction

 $Cd_{(s)} + NiO(OH)_{(s)} \rightarrow Cd(OH)_{2(s)} + Ni(OH)_{2(s)}$

- iv. Write the equation of the reaction at the anode. [02]
- v. Write the equation of the reaction at the **Cathode**. [02]
- vi. Explain how the alkaline cell recharges itself. [01]
- vii. State **three** disadvantages and **two** disadvantages of the alkaline accumulator over the Lead-acid cell. [05]
- c) The diagram below shows a galvanic cell operating under standard conditions. The cell reaction taking place when the cell is functioning is:

 $6C\ell^{\text{-}}(aq) + 2Au^{3+}(aq) \rightarrow 3C\ell_2(g) + 2Au(s)$

With switch is open, the initial reading on the voltmeter is 0.14 V.

Write down the:

i.	NAME or FORMULA of the oxidising agent	[01]		
ii.	Half-reaction which takes place at the anode	[02]		
iii.	Cell notation for this cell	[02]		
iv.	Calculate the standard reduction potential of Au.	[03]		
v.	Switch S is now closed and the bulb lights up. How will the reading on the			
	voltmeter now compare to the INITIAL reading of 0,14 V?. Give a reason for			
	answer.	[02]		

Question four (20 Marks)

- a) Calculate the Gibb's free energy in Joules for a Zn/Cu cell whose standard cell potiential is +1.10V. Explain this cell is spontaneous? [02]
- b) Use the standard reduction potentials below to calculate the equilibrium constant for the following reaction at 25°C. [03]

$$3I_{2(s)} + 2AI_{(s)} \rightarrow 6I_{(aq)}^{-} + 2AI_{(aq)}^{3+}$$

 $I_{2(s)} + 2e^{-} \rightarrow 2I_{-(aq)}^{-} Eo = +0.54V_{-}$ (i)
 $AI_{(aq)}^{3+} + 3e^{-} \rightarrow AI_{-(s)}^{-} Eo = -1.66V_{-}$ (ii)

c) A concentration cell is made using two Zn half cells, one with $[Zn^{2+}_{(aq)}] = 0.1M$ and the other $[Zn^{2+}_{(aq)}] = 1.0M$. if

 $Zn^{2+}_{(aq)} + 2e^{-} \rightarrow Zn_{(s)}$ Eo = -0.76V,

Calculate the potential developed across the terminals of this cell.

Comment on the cell potential when the two half cells have the same concentration. [04]

d)

- i. Differentiate the following terms; Resistivity and Conductivity [02]
- ii. Calculate the resistance of a 12m copper wire whose diametre is 0.01m $(g_{cu} = 1.68 \times 10^{-8} \text{m})$ [02]
- e) Differentiate between metallic conduction and electrolytic conduction. [03]

f) The resistance of a conductivity cell filled with 0.1mol.L⁻¹ KCl is 100Ω. If the resistance of the same cell when filled with 0.02mol.L⁻¹ solution is 520Ω. Calculate conductivity and molar conductivity of the 0.02mol.L⁻¹ KCl solution. The resistivity (g) of 0.1mol.L⁻¹ KCl solution is 1.29sm⁻¹.

Question five (20 Marks)

a)	What is Potentiometric Titration?	[02]
	Explain the principle in Potentiometric titration.	[02]
c)	Describe the method of Potentiometric titration.	[04]
d)	Name FOUR types of Potentiometric titrations. Give a brief description of each of	of these
-/	types of titration.	[04]
e)	What is the main advantage of potentiometric titration?	[02]
	How do you determine the endpoint of this titration?	[02]
	Mention one use of quinhydrone?	[02]
h)	Which electrode is used as a reference electrode?	[02]

