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QUESTION ONE (20 MARKS)

a) State the following theorems
i, The lemma on monotone classes, LMC
ii.  The unique extension theorem, UET
iii.  The monotone convergence theorem, MCT
b) Given p is a ring of subsets of X, { aring of subsets of Y and let R be a ring
generated by the class of all rectangles E X F where E € pand F € {, show that R
coincides with the class of all finite disjoint unions M = Ul E; X F; where E; € p
and F; €
¢) Define the following terms
i.  Measurable rectangle
ii.  Cartesian product of measurable spaces
iii. X-sectionof MinX X Y
iv. Y-sectionof MinX X Y

QUESTION TWO (20 MARKS)

a) Show that for each finite rectangle P x Q there exists a unique(finite) measure
TPXQ(E x F) = u(P N Q)u(Q N F) for every measurable rectangle £ X F.
b) Show that if P; X Q1 € P, X @ then TP, - TF*

¢) Show that if (X, p, &) and (Y, 7,v) are arbitrary measure spaces, there exists a unique

measure 77 on p X T having the following properties
i (P x Q) = u(P)u(Q) for every finite rectangle P X Q
i, (M) = LUB{m(Px Q)N M,p € puw,q € 7,} foreach Minp X

QUESTION THREE (20 MARKS)

a) Given (X,p, 1) is a measure pace and v is a finite measure on p, show that the
following conditions on v are equivalent
i. v is absolutely continuous with respect to i

ii. u(E)=0impliesv(E) =0




b) Suppose v is a finite signed measure on p. Let E,F and E,(n=123...) be
measurable sets, show that
i. u(p)=0
ii. v is finitely additive
iii. v is subtractive; if E € F, then v(F — E) = v(E) — v(F)
iv.  Ifthe E, are mutually disjoint, the series Y®vu(E, ) converges absolutely
v. IfE,TE,thenv(E,) = v(E)
vi. IfE, | E,thenv(E,) = v(E)
vii.  Let (E;);e be a family of measurable sets such that E; N Ej = @ when i # J. If
v(E;) > 0 for all i then I is countable. Same conclusion if v(E;) < 0 for all i.

Same conclusion if v(E;) # 0 for all i.

QUESTION FOUR (20 MARKS)

a) Define the following terms. Given A a locally measurable set, define
i.  Purely positive
ii.  Purely negative
iii.  Equivalent to zero
b) Let v be a finite signed measure on p and let E be a measurable set
i.  Show that if u(E) > 0, there exists a measurable set E, suchthat E, C E,
E, >0andv(E,) >0
ii.  Show that if u(E) < O, there exists a measurable set E,, such that £, < E',
E, <0andu(E,) <0
¢) Suppose v and p are finite measures on p such that v < u and v # 0 show that there
exists an € > 0 and a measurable set E such that
i. E = 0 with respect to finite signed measure v — €u

ii. (u—en)(E)>0,u(E)>0,u(E)>0
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QUESTION FIVE (20 MARKS)

a) Suppose (X, p, 1) isa o — finite measure space and v isa finite signed measure on

p. Show that the following are equivalent
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v is absolutely continuous with respect to u

|v| is AC with respect to u

u(E) = 0 impliesv(E) =0

There exists an fel’ () such that v(E) = |, ¢ fau for every measurable set E.

In this case, f is unique almost everywhere [u]

b) Given (X, p, ) is a finite measure space, and suppose ¢ is a positive linear form on

L' (), that is ¢ is a real-valued function defined on L' (u) such that

D o+ )=o)+ e(f)
2) @(cf) = co(f)
3) @(f) = 0 whenever f =0

Assume, moreover that ¢ is bounded, that is assume there exists a real number
M > 0 such that |@(f)| € M [ |f|du for all f in L' (). Show that there exists a
bounded measurable function g, g = 0 such that @(f) = [ gfdu forall fin

L'().



