

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2020/2021 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF MASTER OF SCIENCE IN PURE MATHEMATICS

COURSE CODE: MAT 822

COURSE TITLE: ABSTRACT INTEGRATION II

DATE: 13/10/21 **TIME**: 9.00AM - 12.00 pm

INSTRUCTIONS TO CANDIDATES

Answer Any other THREE Questions

TIME: 2 Hours

This Paper Consists of 4 Printed Pages. Please Turn Over.

QUESTION ONE (20 MARKS)

- a) State the following theorems
 - i. The lemma on monotone classes, LMC
 - ii. The unique extension theorem, UET
 - iii. The monotone convergence theorem, MCT
- b) Given ρ is a ring of subsets of X, ζ a ring of subsets of Y and let R be a ring generated by the class of all rectangles $E \times F$ where $E \in \rho$ and $F \in \zeta$, show that R coincides with the class of all finite disjoint unions $M = \bigcup_{i=1}^n E_i \times F_i$ where $E_i \in \rho$ and $F_i \in \zeta$
- c) Define the following terms
 - i. Measurable rectangle
 - ii. Cartesian product of measurable spaces
 - iii. X-section of M in $X \times Y$
 - iv. Y-section of M in $X \times Y$

OUESTION TWO (20 MARKS)

- a) Show that for each finite rectangle $P \times Q$ there exists a unique(finite) measure $T^{P \times Q}(E \times F) = \mu(P \cap Q) v(Q \cap F)$ for every measurable rectangle $E \times F$.
- b) Show that if $P_1 \times Q_1 \subseteq P_2 \times Q_2$ then $T^{P_1 \times Q_1} \leq T^{P_2 \times Q_2}$
- c) Show that if (X, ρ, μ) and (Y, τ, v) are arbitrary measure spaces, there exists a unique measure π on $\rho \times \tau$ having the following properties
 - i. $\pi(P \times Q) = \mu(P)\nu(Q)$ for every finite rectangle $P \times Q$
 - ii. $\pi(M) = LUB\{\pi(P \times Q) \cap M, p \in \rho_{\infty}, q \in \tau_{\varphi}\}$ for each M in $\rho \times \tau$

QUESTION THREE (20 MARKS)

- a) Given (X, ρ, μ) is a measure pace and \mathbf{v} is a finite measure on ρ , show that the following conditions on \mathbf{v} are equivalent
 - i. v is absolutely continuous with respect to μ
 - ii. $\mu(E) = 0$ implies v(E) = 0

- b) Suppose v is a finite signed measure on ρ . Let E, F and $E_n (n = 1,2,3...)$ be measurable sets, show that
 - i. $v(\phi) = 0$
 - ii. v is finitely additive
 - iii. v is subtractive; if $E \subseteq F$, then v(F E) = v(E) v(F)
 - iv. If the E_n are mutually disjoint, the series $\sum_{1}^{\infty} v(E_n)$ converges absolutely
 - v. If $E_n \uparrow E$, then $v(E_n) \to v(E)$
 - vi. If $E_n \downarrow E$, then $v(E_n) \rightarrow v(E)$
 - vii. Let $(E_i)_{i \in I}$ be a family of measurable sets such that $E_i \cap E_j = \emptyset$ when $i \neq j$. If $v(E_i) > 0$ for all i then I is countable. Same conclusion if $v(E_i) < 0$ for all i. Same conclusion if $v(E_i) \neq 0$ for all i.

QUESTION FOUR (20 MARKS)

- a) Define the following terms. Given A a locally measurable set, define
 - i. Purely positive
 - ii. Purely negative
 - iii. Equivalent to zero
- b) Let v be a finite signed measure on ρ and let E be a measurable set
 - i. Show that if v(E)>0, there exists a measurable set E_o such that $E_o\subseteq E$, $E_o\geq 0$ and $v(E_o)>0$
 - ii. Show that if v(E) < 0, there exists a measurable set E_o such that $E_o \subseteq E$, $E_o < 0$ and $v(E_o) < 0$
- e) Suppose v and μ are finite measures on ρ such that $v < \mu$ and $v \neq 0$ show that there exists an $\epsilon > 0$ and a measurable set E such that
 - i. $E \ge 0$ with respect to finite signed measure $v \epsilon \mu$
 - ii. $(v \epsilon \mu)(E) > 0, v(E) > 0, \mu(E) > 0$

QUESTION FIVE (20 MARKS)

- a) Suppose (X, ρ, μ) is a σ *finite* measure space and v is a finite signed measure on ρ . Show that the following are equivalent
 - i. $v \ll \mu$
 - ii. $|v| \ll \mu$
 - iii. $v^+ \ll \mu$ and $v^- \ll \mu$
 - iv. ν is absolutely continuous with respect to μ
 - v. |v| is AC with respect to μ
 - vi. $\mu(E) = 0$ implies v(E) = 0
 - vii. There exists an $f \in l'(\mu)$ such that $v(E) = \int_E f d\mu$ for every measurable set E. In this case, f is unique almost everywhere $[\mu]$
- b) Given (X, ρ, μ) is a finite measure space, and suppose φ is a positive linear form on $L'(\mu)$, that is φ is a real-valued function defined on $L'(\mu)$ such that
 - 1) $\varphi(f_1 + f_2) = \varphi(f_1) + \varphi(f_2)$
 - 2) $\varphi(cf) = c\varphi(f)$
 - 3) $\varphi(f) \ge 0$ whenever $f \ge 0$

Assume, moreover that φ is bounded, that is assume there exists a real number $M \ge 0$ such that $|\varphi(f)| \le M \int |f| d\mu$ for all f in $L'(\mu)$. Show that there exists a bounded measurable function $g, g \ge 0$ such that $\varphi(f) = \int gf d\mu$ for all f in $L'(\mu)$.