

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS
2021/2022 ACADEMIC YEAR
SECOND YEAR SECOND SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE:

MAT 222/MAA 221

COURSE TITLE:

CALCULUS III

DATE:

11/05/2022

TIME: 2 PM -4 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

QUESTION ONE (30 MARKS)

- a) Define the following terms
 - (i) Local maximum point
 (ii) Critical resist (2 mks)
 - (ii) Critical point (2 mks)
 - (iii) Saddle point (2 mks)
- b) Find the domain and range for the function $f(x, y) = \frac{2}{x^2 y}$ (2 mks)
- c) The production function is given by $f(x, y) = 2xy + x^2$ maximize the this function subject to budget constraint x 2y = 16 (5 m/s)
- d) Find the volume in the 1st octant between the planes z = 0, and z = 2x + 3y 5 and inside the cylinder $x^2 + y^2 9 = 0$ (5 mks)
- e) Investigate the convergence of $\sum_{k=0}^{\infty} \frac{(-5)^{2k}e^{2k}}{2k!}$ (5 mks)
- f) Locate any relative extreme points and determine their nature for the function $f(x, y, z) = 3x^2 + 5y^2 + z^2 16x + 15y 4z 10$ (7 mks)

QUESTION TWO (20 MARKS)

- a) Use the 1st principles to determine $\frac{\partial f}{\partial y}$ given that $f(x,y) = 6xy 2x^2y^2 y^3$
- b) Let $f(x, y, z) = x \ln(xz) e^{2x^2y} + 3\sin(xvz)$. Find
 - (i) f_{xy} (2 mks)
 - (ii) f_{yxz} (3 mks)
- c) Evaluate $\int_0^\pi \int_0^{\frac{\pi}{2}} \int_0^{\sin y} 2\sin z \cos y dx dy dz$ (5 mks)
- d) Verify that the Tailor series expansion for the function f(x) = sinx about x = 0 is $sinx = \sum_{n=0}^{\infty} \frac{(-1)^n (x)^{2n+1}}{(2n+1)!}$ hence find the Maclaurin series for f(x) = 3xsinx (6 mks)

QUESTION THREE (20 MARKS)

- a) Evaluate $\lim_{(x,y)\to(2,2)} \frac{y^2 xy}{\sqrt{x} \sqrt{y}}$ (4 mks)
- b) Suppose z is a differentiable function near each (x, y) for the equation $x\cos y 4y^2z + \ln(xyz) = 6$ find $\frac{\partial z}{\partial y}$ (3mks)
- c) An open cylinder has a volume of 112.32 cm³ Find the radius and the height that will yield maximum surface area

 (6 mks)
- d) Use the Lagrange multipliers to find the local extrema of the function $f(x, y) = x^3 + 3y^2$ Subject to $x^2 + y^2 = 16$ (7 mks)

QUESTION FOUR (20 MARKS)

- a) If $R = \{x, y \mid 1 \le x \le 2 \text{ and } 0 \le y \le 3\}$ evaluate $\iint_R (26x^2y + y 8x)dA$ (3 mks)
- b) Let $z = e^{-3x} siny$ and $x = 2st^2 3t$ and $y = t^3 3s$ find $\frac{\partial z}{\partial t} \text{ and } \frac{\partial z}{\partial s}$ (7 mks)
- c) Find the volume of the solid bounded by the graphs of $z = 4 y^2$, x z = 3, x = 0, and z = 0 (5 mks)
- d) Consider the series $S_n = \frac{1}{\sqrt{2n-1}}$ using the integral test, determine whether the series converges or diverges (5 mks)

QUESTION FIVE (20 MARKS)

- a) Consider the series $\sum_{k=1}^{\infty} \frac{(-4)^{k-1} 6^k}{2k^2}$ use ratio theorem to show that the series diverges (5 mks)
- b) Find the radius and interval of convergence of the series $\sum_{k=1}^{\infty} \frac{(-3)^k (x-5)^k}{k2^{k-1}}$ (5 mks)
- c) Locate and classify all critical points of $f(x_1, x_2, x_3) = 4x_2 + 12x_1x_3 4x_1^3 2x_2^2 12x_3^2 + 2$ (10 mks)