

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR THIRD YEAR SECOND SEMESTER MAIN EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE IN

MATHEMATICS

COURSE CODE:

MAP 322

COURSE TITLE: GROUP THEORY II

DATE:

01/10/21

TIME: 2 PM - 4 PM

INSTRUCTIONS TO CANDIDATES

Answer Question ONE and Any TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (30MARKS)

a. De	efine the following	
	i. Center of a Group	(2marks)
i	ii. Conjugacy Classes	(2marks)
ii	ii. P-groups	(2marks)
i	v. Sylow p-subgroup	(2marks)
	v. Normalizer	(2marks)
b. State the following		
i.	Class Equation	(2 marks)
ii.	Cauchy Theorem	(2 marks)
iii.	First Sylow Theorem	(2 marks)
iv.	Second Sylow Theorem	(2 marks)
c. De	etermine the Conjugacy classes and the class equation in S ₃	(5 marks)
d. Let G be a group of order p ⁿ where p is prime. Show that G has a non-trivial center		
		(7 marks)
QUESTION TWO (20MARKS)		
a. De	efine the following sets	
	i. Maximal normal subgroup	(2marks)
i	i. Composition series	(2marks)
ii	i. Soluble group	(2marks)
b. Sh	now that every finite group G has a composition series	(7marks)
c. Sh	now that all finite abelian groups are soluble	(7marks)
QUESTION THREE (20MARKS)		
a. State the following theorems		
	i. Nilpotency class	(2marks)
i	i. Central series	(2marks)
ii	i. Lower central series	(2marks)
b. Sh	now that every nilpotent group is solvable	(4marks)

- c. Show that a group G is nilpotent if and only if it has a central series (4marks)
- d. If G is a finite group and P is a Sylow p-subgroup of G. Show that $N_G(N_G(P)) = N_G(P)$ (6marks)

QUESTION FOUR (20MARKS)

- a. State the following theorems
 - i. Fundamental Theorem of Finite Abelian Groups (3marks)
 - ii. The Fundamental Theorem of Finitely Generated Abelian Groups (3marks)
- b. Let H be the subgroup of a group G that is generated by $\{g_i \in G: I \in I\}$. Show that $h \in H$ exactly when it is a product of the form $h = g_{i1}^{\alpha 1} \dots g_{in}^{\alpha n}$ where the $g_{ik}s$ are not necessarily distinct (8marks)
- c. Classify all abelian groups of order $540 = 2^2.3^3.5$ using the fundamental theorem of finite abelian groups (6marks)

QUESTION FIVE (20MARKS)

- a. Define the following
 - i. External direct product (2marks)
 - ii. Internal direct product (2marks)
 - iii. Internal semi direct product (2marks)
- b. Show that if G is the internal direct product of H and K, then G is isomorphic to the external direct product H×K (9marks)
- c. Let G be a group with subgroups H and K. Suppose that G = HK and $H \cap K = \{1\}$. Show that every element g of G can be written uniquely in the form hk for $h \in H$ and $k \in K$ (5marks)