

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER SPECIAL/SUPPLEMENTARY EXAMINATIONS

FOR THE DEGREE OF B.RB, BPH, BAB, BAE AND BSC (CHEM)

COURSE CODE:

SCH 121*

COURSE TITLE: INTRODUCTION TO PHYSICAL CHEMISTRY

DATE: 30/09/2021

TIME: 2:00-4:00PM

INSTRUCTIONS TO CANDIDATES:

TIME: 2 Hours

Answer question ONE and any TWO of the remaining

KIBU OBSERVES ZERO TOLERANCE TO examination cheating

Question one (30marks) (a)Define the following terms	(3 marks)
i. Physical chemistry	
ii. Colligative properties	
iii. Degree of dissociation	
(b) A gas occupies a volume of 0.2L at 25°C and pressure of 1 atm. What volume with	ll it occupy at
17°C and 760mmHg pressure?	(2 marks)
(c) Deduce the physical significance of gas constant R	(3 Marks)
(d) (i) State the law of mass action	(1 mark)
(ii) The equilibrium constant K_c for the reaction $H_2 + I_2 \rightarrow 2HI$ is 60 at 450°C. Determine	ne the value of
K_p for the above reaction(R=8.3142)	(2 Marks)
(e) i) State Ostwald law of dilution	(2 mark)
(ii) State the four factors that affect the degree of dissociation	(4 marks)
(f) 2.0g of methane was completely burnt in air and the amount of heat produced raised the	temperature of
500mL of water from 22.0°C to 39°C. Determine the molar heat of combustion of m	ethane $(C=12,$
H=1, Specific heat capacity of water=4.18J/g/°C)	(3 Marks)
g) State three differences between metallic and electrolytic conductors	(3 marks)
(h) Is it possible to store zinc (ii) nitrate solutions in a iron container? Explain	$((Zn^{2+} + 2e \rightleftharpoons$
$Zn(-0.76v), Fe^{2+} + 2e \rightleftharpoons Fe(-0.44V)$	(2marks)
(i) When a current was passed through AgNO ₃ solution for 15 minutes, 0.325g of silver w	as deposited at
the cathode. Calculate the amount of current passed (1F = 96487 C mol ⁻¹ , Ag=108)	(2 marks)
(j) (i) In chromatography what is retention factor (Rf)	(1 mark)
(ii) If a compound travels 2.1 cm and the solvent front travels 2.8 cm determine the retention	on factor
	(2 Mark)
Question two (20 marks)	
a) i) Deduce Vander Waal equation of real gases.	(5marks)
b)) The ionization constant for certain acid HA is 4.5×10^4 at 298K. What concentration of	
b)) The following constant for certain details in the same and the sam	f acid would be
required to produce a hydrogen ion concentration of 3.2x10 ⁻³ M? What would be the degree	of ionization?
required to produce a hydrogen ion concentration of 3.2x10 ⁻³ M? What would be the degree	of ionization? (10 mark)
required to produce a hydrogen ion concentration of 3.2x10 ⁻³ M? What would be the degree c) (i) State any two colligative properties	(10 mark) (2 mark)
required to produce a hydrogen ion concentration of 3.2x10 ⁻³ M? What would be the degree c) (i) State any two colligative properties (ii) A mixture of water and bromobenzene (C ₆ H ₅ Br) distills at 95°C, and the distillate con	(10 mark) (2 mark) ntains 1.6 times
required to produce a hydrogen ion concentration of 3.2x10 ⁻³ M? What would be the degree c) (i) State any two colligative properties (ii) A mixture of water and bromobenzene (C ₆ H ₅ Br) distills at 95°C, and the distillate con as much C ₆ H ₅ Br as water by mass. At 95°C the vapour pressure of water and C ₆ H ₅ Br are 6	(10 mark) (2 mark) ntains 1.6 times 640 mm Hg and
required to produce a hydrogen ion concentration of 3.2x10 ⁻³ M? What would be the degree c) (i) State any two colligative properties (ii) A mixture of water and bromobenzene (C ₆ H ₅ Br) distills at 95°C, and the distillate coras much C ₆ H ₅ Br as water by mass. At 95°C the vapour pressure of water and C ₆ H ₅ Br are 6 120 mm Hg respectively. Calculate the molecular weight of bromobenzene. (3 marks)	(10 mark) (2 mark) ntains 1.6 times 640 mm Hg and (3 marks)
required to produce a hydrogen ion concentration of 3.2x10 ⁻³ M? What would be the degree c) (i) State any two colligative properties (ii) A mixture of water and bromobenzene (C ₆ H ₅ Br) distills at 95°C, and the distillate coras much C ₆ H ₅ Br as water by mass. At 95°C the vapour pressure of water and C ₆ H ₅ Br are 6 120 mm Hg respectively. Calculate the molecular weight of bromobenzene. (3 marks) d) State Lechateliers principle	(10 mark) (2 mark) ntains 1.6 times 640 mm Hg and
required to produce a hydrogen ion concentration of 3.2x10 ⁻³ M? What would be the degree c) (i) State any two colligative properties (ii) A mixture of water and bromobenzene (C ₆ H ₅ Br) distills at 95°C, and the distillate coras much C ₆ H ₅ Br as water by mass. At 95°C the vapour pressure of water and C ₆ H ₅ Br are 6 120 mm Hg respectively. Calculate the molecular weight of bromobenzene. (3 marks) d) State Lechateliers principle ii) Briefly explain the effect of the following on equilibrium	(10 mark) (2 mark) ntains 1.6 times 540 mm Hg and (3 marks) (2 marks)
required to produce a hydrogen ion concentration of 3.2x10 ⁻³ M? What would be the degree c) (i) State any two colligative properties (ii) A mixture of water and bromobenzene (C ₆ H ₅ Br) distills at 95°C, and the distillate coras much C ₆ H ₅ Br as water by mass. At 95°C the vapour pressure of water and C ₆ H ₅ Br are 6 120 mm Hg respectively. Calculate the molecular weight of bromobenzene. (3 marks) d) State Lechateliers principle ii) Briefly explain the effect of the following on equilibrium a) Temperature	(10 mark) (2 mark) ntains 1.6 times (40 mm Hg and (3 marks) (2 marks)
required to produce a hydrogen ion concentration of 3.2x10 ⁻³ M? What would be the degree c) (i) State any two colligative properties (ii) A mixture of water and bromobenzene (C ₆ H ₅ Br) distills at 95°C, and the distillate coras much C ₆ H ₅ Br as water by mass. At 95°C the vapour pressure of water and C ₆ H ₅ Br are 6 120 mm Hg respectively. Calculate the molecular weight of bromobenzene. (3 marks) d) State Lechateliers principle ii) Briefly explain the effect of the following on equilibrium	(10 mark) (2 mark) ntains 1.6 times 540 mm Hg and (3 marks) (2 marks)
required to produce a hydrogen ion concentration of 3.2x10 ⁻³ M? What would be the degree c) (i) State any two colligative properties (ii) A mixture of water and bromobenzene (C ₆ H ₅ Br) distills at 95°C, and the distillate con as much C ₆ H ₅ Br as water by mass. At 95°C the vapour pressure of water and C ₆ H ₅ Br are 6 120 mm Hg respectively. Calculate the molecular weight of bromobenzene. (3 marks) d) State Lechateliers principle ii) Briefly explain the effect of the following on equilibrium a) Temperature b) Concentration	(10 mark) (2 mark) ntains 1.6 times (40 mm Hg and (3 marks) (2 marks)
required to produce a hydrogen ion concentration of 3.2x10 ⁻³ M? What would be the degree c) (i) State any two colligative properties (ii) A mixture of water and bromobenzene (C ₆ H ₅ Br) distills at 95°C, and the distillate con as much C ₆ H ₅ Br as water by mass. At 95°C the vapour pressure of water and C ₆ H ₅ Br are 6 120 mm Hg respectively. Calculate the molecular weight of bromobenzene. (3 marks) d) State Lechateliers principle ii) Briefly explain the effect of the following on equilibrium a) Temperature b) Concentration Ouestion three (20 marks)	(10 mark) (2 mark) ntains 1.6 times 540 mm Hg and (3 marks) (2 marks) (2 marks) (2 marks)
required to produce a hydrogen ion concentration of 3.2x10 ⁻³ M? What would be the degree c) (i) State any two colligative properties (ii) A mixture of water and bromobenzene (C ₆ H ₅ Br) distills at 95°C, and the distillate coras much C ₆ H ₅ Br as water by mass. At 95°C the vapour pressure of water and C ₆ H ₅ Br are considered to the molecular weight of bromobenzene. (3 marks) d) State Lechateliers principle ii) Briefly explain the effect of the following on equilibrium a) Temperature b) Concentration Question three (20 marks) (i) Calculate the pH value of a solution containing 0.2 moles of NH ₄ OH and 0.25 m	(10 mark) (2 mark) ntains 1.6 times 640 mm Hg and (3 marks) (2 marks) (2 marks) (2 marks)
required to produce a hydrogen ion concentration of 3.2×10^{-3} M? What would be the degree c) (i) State any two colligative properties (ii) A mixture of water and bromobenzene (C_6H_5 Br) distills at 95°C, and the distillate coras much C_6H_5 Br as water by mass. At 95°C the vapour pressure of water and C_6H_5 Br are 6 120 mm Hg respectively. Calculate the molecular weight of bromobenzene. (3 marks) d) State Lechateliers principle ii) Briefly explain the effect of the following on equilibrium a) Temperature b) Concentration Question three (20 marks) (i) Calculate the pH value of a solution containing 0.2 moles of NH ₄ OH and 0.25 m ($K_b = 1.8 \times 10^{-5}$, $K_w = 10^{-14}$)	(10 mark) (2 mark) ntains 1.6 times 640 mm Hg and (3 marks) (2 marks) (2 marks) (2 marks) (2 marks)
required to produce a hydrogen ion concentration of $3.2 \times 10^{-3} \text{M}$? What would be the degree c) (i) State any two colligative properties (ii) A mixture of water and bromobenzene (C_6H_5Br) distills at 95°C, and the distillate coras much C_6H_5Br as water by mass. At 95°C the vapour pressure of water and C_6H_5Br are 6 120 mm Hg respectively. Calculate the molecular weight of bromobenzene. (3 marks) d) State Lechateliers principle ii) Briefly explain the effect of the following on equilibrium a) Temperature b) Concentration Question three (20 marks) (i) Calculate the pH value of a solution containing 0.2 moles of NH ₄ OH and 0.25 m ($K_b = 1.8 \times 10^{-5}$, $K_w = 10^{-14}$) (ii) a) What is a buffer solution	(10 mark) (2 mark) (2 mark) ntains 1.6 times 640 mm Hg and (3 marks) (2 marks) (2 marks) (2 marks) (2 marks) (2 marks)
required to produce a hydrogen ion concentration of 3.2x10 ⁻³ M? What would be the degree c) (i) State any two colligative properties (ii) A mixture of water and bromobenzene (C ₆ H ₅ Br) distills at 95°C, and the distillate consists much C ₆ H ₅ Br as water by mass. At 95°C the vapour pressure of water and C ₆ H ₅ Br are consistent to 120 mm Hg respectively. Calculate the molecular weight of bromobenzene. (3 marks) d) State Lechateliers principle ii) Briefly explain the effect of the following on equilibrium a) Temperature b) Concentration Question three (20 marks) (i) Calculate the pH value of a solution containing 0.2 moles of NH ₄ OH and 0.25 m (K _b = 1.8 × 10 ⁻⁵ , K _w = 10 ⁻¹⁴) (ii) a) What is a buffer solution b) How many moles of sodium ethanoate must be dissolved in one litre of 0.05M ethanoide	(10 mark) (2 mark) (2 mark) ntains 1.6 times 640 mm Hg and (3 marks) (2 marks) (2 marks) (2 marks) (2 marks) coles of NH ₄ Cl. (5 marks) (2 marks) c acid to give a
required to produce a hydrogen ion concentration of $3.2 \times 10^{-3} M$? What would be the degree c) (i) State any two colligative properties (ii) A mixture of water and bromobenzene (C_6H_5Br) distills at 95°C, and the distillate coras much C_6H_5Br as water by mass. At 95°C the vapour pressure of water and C_6H_5Br are 6 120 mm Hg respectively. Calculate the molecular weight of bromobenzene. (3 marks) d) State Lechateliers principle ii) Briefly explain the effect of the following on equilibrium a) Temperature b) Concentration Question three (20 marks) (i) Calculate the pH value of a solution containing 0.2 moles of NH ₄ OH and 0.25 m ($K_b = 1.8 \times 10^{-5}, K_w = 10^{-14}$) (ii) a) What is a buffer solution b) How many moles of sodium ethanoate must be dissolved in one litre of 0.05M ethanolous buffer solution of pH=4 ($K_a = 1.8 \times 10^{-5}$ M/L	(10 mark) (2 mark) (2 mark) ntains 1.6 times 640 mm Hg and (3 marks) (2 marks) (2 marks) (2 marks) (2 marks) coles of NH ₄ Cl. (5 marks) (2 marks) c acid to give a (4 marks)
required to produce a hydrogen ion concentration of $3.2 \times 10^{-3} \text{M}$? What would be the degree c) (i) State any two colligative properties (ii) A mixture of water and bromobenzene (C_6H_5Br) distills at 95°C, and the distillate con as much C_6H_5Br as water by mass. At 95°C the vapour pressure of water and C_6H_5Br are 6 120 mm Hg respectively. Calculate the molecular weight of bromobenzene. (3 marks) d) State Lechateliers principle ii) Briefly explain the effect of the following on equilibrium a) Temperature b) Concentration Question three (20 marks) (i) Calculate the pH value of a solution containing 0.2 moles of NH ₄ OH and 0.25 m ($K_b = 1.8 \times 10^{-5}, K_w = 10^{-14}$) (ii) a) What is a buffer solution b) How many moles of sodium ethanoate must be dissolved in one litre of 0.05M ethanolous buffer solution of pH=4 ($K_a = 1.8 \times 10^{-5}$ M/L c) Briefly explain how a buffer solution of a weak acid with its salt such as acetic acid (6 pt. 10.10 pt. 1	(10 mark) (2 mark) (2 mark) ntains 1.6 times 640 mm Hg and (3 marks) (2 marks) (2 marks) (2 marks) (2 marks) coles of NH ₄ Cl. (5 marks) (2 marks) c acid to give a (4 marks)
required to produce a hydrogen ion concentration of $3.2 \times 10^{-3} \text{M}$? What would be the degree c) (i) State any two colligative properties (ii) A mixture of water and bromobenzene (C_6H_5Br) distills at 95°C, and the distillate coras much C_6H_5Br as water by mass. At 95°C the vapour pressure of water and C_6H_5Br are 6 120 mm Hg respectively. Calculate the molecular weight of bromobenzene. (3 marks) d) State Lechateliers principle ii) Briefly explain the effect of the following on equilibrium a) Temperature b) Concentration Question three (20 marks) (i) Calculate the pH value of a solution containing 0.2 moles of NH ₄ OH and 0.25 m ($K_b = 1.8 \times 10^{-5}, K_w = 10^{-14}$) (ii) a) What is a buffer solution b) How many moles of sodium ethanoate must be dissolved in one litre of 0.05M ethanoit buffer solution of pH=4 ($K_a = 1.8 \times 10^{-5}$ M/L c) Briefly explain how a buffer solution of a weak acid with its salt such as acetic acid (6 sodium acetate (CH ₃ COONa) resists a change in pH when;	(10 mark) (2 mark) (2 mark) ntains 1.6 times 640 mm Hg and (3 marks) (2 marks) (2 marks) (2 marks) (2 marks) coles of NH ₄ Cl. (5 marks) (2 marks) c acid to give a (4 marks)
required to produce a hydrogen ion concentration of $3.2 \times 10^{-3} M$? What would be the degree c) (i) State any two colligative properties (ii) A mixture of water and bromobenzene (C_6H_5Br) distills at 95°C, and the distillate coras much C_6H_5Br as water by mass. At 95°C the vapour pressure of water and C_6H_5Br are 6 120 mm Hg respectively. Calculate the molecular weight of bromobenzene. (3 marks) d) State Lechateliers principle ii) Briefly explain the effect of the following on equilibrium a) Temperature b) Concentration Question three (20 marks) (i) Calculate the pH value of a solution containing 0.2 moles of NH ₄ OH and 0.25 m ($K_b = 1.8 \times 10^{-5}$, $K_w = 10^{-14}$) (ii) a) What is a buffer solution b) How many moles of sodium ethanoate must be dissolved in one litre of 0.05M ethanoibuffer solution of pH=4 ($K_a = 1.8 \times 10^{-5}$ M/L c) Briefly explain how a buffer solution of a weak acid with its salt such as acetic acid (6 sodium acetate (CH ₃ COONa) resists a change in pH when; (ci) A solution of strong acid eg HCl is added	(10 mark) (2 mark) (2 mark) ntains 1.6 times (3 marks) (2 marks) (3 marks) (4 marks) (5 marks) (6 marks) (10 marks)
required to produce a hydrogen ion concentration of $3.2 \times 10^{-3} M$? What would be the degree c) (i) State any two colligative properties (ii) A mixture of water and bromobenzene (C_6H_5Br) distills at 95°C, and the distillate coras much C_6H_5Br as water by mass. At 95°C the vapour pressure of water and C_6H_5Br are 6120 mm Hg respectively. Calculate the molecular weight of bromobenzene. (3 marks) d) State Lechateliers principle ii) Briefly explain the effect of the following on equilibrium a) Temperature b) Concentration Question three (20 marks) (i) Calculate the pH value of a solution containing 0.2 moles of NH ₄ OH and 0.25 m ($K_b = 1.8 \times 10^{-5}, K_w = 10^{-14}$) (ii) a) What is a buffer solution b) How many moles of sodium ethanoate must be dissolved in one litre of 0.05M ethanois buffer solution of pH=4 ($K_a = 1.8 \times 10^{-5}$ M/L c) Briefly explain how a buffer solution of a weak acid with its salt such as acetic acid (0 sodium acetate (CH ₃ COONa) resists a change in pH when; (ci) A solution of strong acid eg HCl is added (Cii) A solution of strong base (OH-) is added	(10 mark) (2 mark) (2 mark) ntains 1.6 times 640 mm Hg and (3 marks) (2 marks) (2 marks) (2 marks) coles of NH ₄ Cl. (5 marks) (2 marks) cacid to give a (4 marks) CH ₃ COOH) and
required to produce a hydrogen ion concentration of $3.2 \times 10^{-3} M$? What would be the degree c) (i) State any two colligative properties (ii) A mixture of water and bromobenzene (C_6H_5Br) distills at 95°C, and the distillate coras much C_6H_5Br as water by mass. At 95°C the vapour pressure of water and C_6H_5Br are 6 120 mm Hg respectively. Calculate the molecular weight of bromobenzene. (3 marks) d) State Lechateliers principle ii) Briefly explain the effect of the following on equilibrium a) Temperature b) Concentration Question three (20 marks) (i) Calculate the pH value of a solution containing 0.2 moles of NH ₄ OH and 0.25 m ($K_b = 1.8 \times 10^{-5}$, $K_w = 10^{-14}$) (ii) a) What is a buffer solution b) How many moles of sodium ethanoate must be dissolved in one litre of 0.05M ethanoibuffer solution of pH=4 ($K_a = 1.8 \times 10^{-5}$ M/L c) Briefly explain how a buffer solution of a weak acid with its salt such as acetic acid (6 sodium acetate (CH ₃ COONa) resists a change in pH when; (ci) A solution of strong acid eg HCl is added	(10 mark) (2 mark) (2 mark) ntains 1.6 times 640 mm Hg and (3 marks) (2 marks) (2 marks) (2 marks) coles of NH ₄ Cl. (5 marks) (2 marks) cacid to give a (4 marks) CH ₃ COOH) and

(1 mark) b) Lewis concepts iv) Given that the solubility product of Mg (OH)₂ is 1.2×10^{-11} . Calculate the solubility of Mg (OH)₂ (3 marks) Question Four (20 marks) (i) . If C is the original concentration of the electrolyte and α is the degree of dissociation, using $AB \rightleftharpoons A^+B^-$ Derive mathematical representation of Ostwald dilution law $\left(\alpha = \sqrt{\frac{\kappa_a}{c}}\right)$ (10marks) (ii) A sample of a gas weighing $0.0286 \times 10^{-3} Kg$ occupies a volume of $0.05 \times 10^{-3} m^3$ at apressure of 1 atm and temperature of 25°C. Find the molar mas of the gas (10marks) Question Five (20 marks) a) One of the uses of electrochemistry in manufacture of dry cells (Leclanche cell) (1 mark) i) State why the cells are called dry cells ii) Write the Cathodic and anodic reactions taking place when the cell is in use (2 marks) Cathodic reaction Anodic reaction (2 marks) iii) What is the role of Zinc (II) chloride in the paste used (1 mark) iv) Dry cells are examples of primary cell. What does this mean (1 mark) b) A solution of 0.1M acetic acid is found to be dissociated to an extent of 1.43%. Calculate the (8 marks) dissociation constant of the acid c)) A sample of the black mineral hematite, an oxide of iron found in many iron ores, contains 34.97 g of iron and 15.03 g of oxygen. What is the empirical formula of hematite? (5 marks)