

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS **2020/2021 ACADEMIC YEAR** YEAR THREE SEMESTER TWO MAIN EXAMINATIONS FOR THE DEGREE OF **BACHELOR OF EDUCATION SCIENCE**

COURSE CODE: STA 325

COURSE TITLE: MULTIVARIATE PROBABILITY DISTRIBUTION

DATE: 7/10/2021

TIME: 2:00 PM - 4:00 PM

INSTRUCTIONS TO CANDIDATES

Answer Questions ONE and ANY OTHER TWO.

QUESTION ONE [30 MARKS]

(a) Explain the following terms

(i)	Principle component analysis	(1mk)
(ii)	Random vector	(1mk)

(b) Given the joint pdf of random variables X, Y and Z as

$$f(x,y,z) = \begin{cases} e^{-x-y-z} \; ; \; 0 < x < \infty, 0 < y < \infty, 0 < z < \infty \\ 0 \; ; \; elsewhere \end{cases}$$

Find the joint cumulative distribution function (cdf) of the three random variables.

(5mks)

(c) Let
$$\underline{x} = [1, 3, 2]$$
 and $y = [-2, 1, -1]$ find

(i) The length of
$$\underline{x}$$
 (1mk)

(ii) The angle between
$$\underline{x}$$
 and y (3mks)

(iii) The length of the projection of
$$\underline{x}$$
 and \underline{y} (1mk)

(d) Let
$$A = \begin{bmatrix} 3 & -\sqrt{2} \\ -\sqrt{2} & 2 \end{bmatrix}$$

(e) Consider the following n=7 observations on p=2 variables

x_1	3	4	2	6	8	2	5
x_2	5	5.5	4	7	10	5	7.5

- (i) Compute the sample means \bar{x}_1 and \bar{x}_2 and the sample variances S_{11} and S_{22} (4mks)
- (ii) Compute the sample covariance S_{12} and the sample correlation coefficient r_{12} and interpret these quantities (5mks)
- (iii) Display the sample mean array \bar{x} , the sample correlation array R and the sample variance-covariance S_{12} (3mks)

QUESTION TWO [20 MARKS]

(a) In an experiment involving two correlated variables, the following sample statistics were

obtained:
$$\overline{\underline{X}} = \begin{bmatrix} 10.00\\10.00 \end{bmatrix}$$
 $S = \begin{bmatrix} 0.7986 & 0.6793\\0.6793 & 0.7343 \end{bmatrix}$. Determine

- (i) Principal components (8mks)
- (ii) Variance of each principal component (3mks)
- (iii) Percentage of variance explained by each principal component (3mks)
- (b) Let \underline{x} be a p-variate random vector, A be a non-zero matrix constants and \underline{b} a $p \times 1$ vector of constants, show that

$$var(Ax + b) = A\Sigma A'$$
 (6mks)

QUESTION THREE [20 MARKS]

a) Let three random variables have the joint probability density function (pdf) as follows:

$$f(\chi_{1}, \chi_{2}, \chi_{3}) = \begin{cases} 8\chi_{1}\chi_{2}\chi_{3}; & 0 < \chi_{1} < 1, 0 < \chi_{2} < 1, 0 < \chi_{3} < 1 \\ & 0, & otherwise \end{cases}$$

Compute the expected value $5X_1X_2^3 + 3x_2X_3^4$ of (5mks)

- b) Use the pdf in (b) above to compute $\Pr(X_1 \le \frac{1}{2}, X_2 \le \frac{1}{2}, X_3 \le \frac{1}{2})$. (5mks)
- c) Assume $\underline{x}'=(x_1,x_2,x_3)$ is normally distributed with mean vector $\underline{\mu}=(1,-1,2)$ and variance matrix $\Sigma=\begin{bmatrix}4&0&-1\\0&5&0\\-1&0&2\end{bmatrix}$. Find the distribution of $3x_1-2x_2+x_3$ (5mks)
- d) Find the maximum likelihood estimators of the mean vector $\underline{\mu}$ and covariance matrix Σ based on the data matrix

$$x = \begin{bmatrix} 5 & 1 \\ -2 & 3 \\ 3 & 4 \end{bmatrix}$$
 (5mks)

QUESTION FOUR [20 MARKS]

a) Let random variables X, Y and Z have the joint pdf given by

$$f(x, y, z) = \begin{cases} \frac{12\chi^2 + 12yz}{7}; & 0 < x < 1, 0 < y < 1, 0 < z < 1\\ 0, & otherwise \end{cases}$$

- i) Use the joint pdf to find $f(z \mid x, y)$. (3mks)
- ii) What is the $E(Z \setminus x = \frac{1}{2}, y = \frac{1}{2})$? (5mks)
- iii) Find $Var(Z \setminus x = \frac{1}{2}, y = \frac{1}{2})$. (5mks)
- b) Show that the sample mean is an unbiased estimator of $\underline{\mu}$ and that the sample variance is biased estimator of matrix Σ (7mks)

QUESTION FOUR [20 MARKS]

- (a) Define a random vector
- (b) Let \underline{x} be a random vector having the covariance matrix

$$\Sigma = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 9 & -3 \\ 2 & -3 & 25 \end{bmatrix}$$

- (i) Obtain the population correlation matrix (ρ) and $V^{\frac{1}{2}}$ (6mks)
- (ii) Multiply your matrices to check the relation $V^{\frac{1}{2}}\rho V^{\frac{1}{2}}$ (3mks)
- (c) Find the covariance matrix for the two random variables X_1 and X_2 when their joint probability function $P_{12}(x_1, x_2)$ is represented by the entries in the study of the following table

X_2	0	1	
X_2			$P_1(X_1)$
-1	0.24	0.06	0.3
0	0.16	0.14	0.3
1	0.40	0.00	0.4
$P_2(X_2)$	0.8	0.2	

(9mks)