KIBABII UNIVERSITY ## UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR FIRST YEAR FIRST SEMESTER SPECIAL/SUPPLEMENTARY EXAMINATIONS FOR THE DEGREE OF B.ED (SCIENCE) **COURSE CODE: SCH 117** COURSE TITLE: FUNDAMENTALS OF CHEMISTRY DATE: 30/09/2021 TIME: 2:00-4:00PM ## **INSTRUCTIONS TO CANDIDATES:** TIME: 2 Hours Answer question ONE and any TWO of the remaining KIBU OBSERVES ZERO TOLERANCE TO examination cheating | QUESTION ONE (30MARKS) | | |--|---------------| | 1. (a) State the following principles and rule (3 r | marks) | | i. Aufbau's principle | | | ii. Pauli's exclusion principle | | | iii. Hund's rule | | | (b) Write the electronic configuration of the following elements (4nd | narks) | | i. Platinum(78) | | | ii. Aluminium(13) | | | iii. Chromium (24) | | | iv. Titanium (22) | | | (c) An element X with RAM of 21.845 has three isotopes X_1 , X_2 and X_3 of masses 20, 22 | and W. | | Their relative abundances are 8.7, 89.4 and 1.9% respectively. | | | | mark) | | | marks) | | (d) At different times scientists have proposed various descriptions or models of the a | | | match experimental evidence available. The model that Bohr's proposed was called the | Bohr's | | model. | | | | marks) | | | marks) | | | marks) | | | marks) | | (S) man denotes many and some months and and an analysis of the some some some some some some some som | narks) | | (h) Balance the following equation with the smallest whole number coefficients. What is t | | | EXPRESENCE (1980) (1990 | marks) | | $PtCl_4 + XeF_2 \rightarrow PtF_6 + ClF + Xe$ | 200 | | (i) A 5.0 g sample of methanol, CH ₃ OH, was combusted in the presence of excess oxy | St. Committee | | a bomb calorimeter containing 4000 g of water. The temperature of the water inc | | | from 24.0 °C to 29.765°C. The heat capacity of the calorimeter was 2657 J/° | | | specific heat of water is 4.184 J/g°C. Calculate E for the reaction in kJ/mol. (3nd | narks) | | QUESTION TWO (20 MARKS) | | | 2. (I) (a) Briefly describe the Thomson's Atomic model experiment (Cathode ray experiment) | riment) | | | marks) | | | marks) | | (c) State the two postulates of the Thomson's atomic model based on observation | | | | marks) | | | mark) | | | marks) | | (c) An electron is in one of the 3d orbitals. Give the possible values of n, 1 and ml to | | | | marks) | | | marks) | | | , | | Question Three (20 marks) | | | 3. (I) Distinguish between Mendeleev's and Moseley's periodic laws (2 r | marks) | - (II) In terms of structure and bonding explain the differences between diamond and graphite (5 marks) - (III) According to valence bond theory, two or more atomic orbitals on a central atom in a molecule "mix" to form an equal number of hybrid orbitals. What is the orbital hybridization of central atom in the following compounds (3 marks) - a. CH₄ - b. BF₃ - c. BeF2 - (IV) (a) What are intermolecular forces? (1 mark) (b) Briefly describe the following intermolecular forces of attraction (9 marks) - i. Dipole-dipole attraction - ii. Dispersion force. - iii. Hydrogen bonding **QUESTION FOUR (20 MARKS)** - 4. (I) (a) Stepwise explain how you can one prepare 750 mL solution of 0.5 M H₂SO₄, from 2.5 M H₂SO₄ stock solution? (3 marks) - (b) Using the equation 2 KBr (aq) + Pb (NO₃)₂ (aq) \rightarrow 2 KNO₃ (aq) + PbBr₂ (s) deduce; - (i) The ionic equation (1 mark) - (ii) With a reason identify the reducing agent and the oxidizing agent - (2 marks) - (II) If the volume of a sealed container is kept constant and the gas inside is heated to a higher temperature, the gas pressure increases. Explain (3 marks) - (III) Briefly describe the two types of solids (4 marks) - (a) Amorphous solids - (IV) (a) State Gay-Lussac's law (1 mark) - (b) Methane reacts with oxygen as per following reaction - $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$ - If 60 cm³ of methane was sparked with excess oxygen, determine the volume of residual gas at - room temperature (2 marks) (V) Show that ideal gas equation is P V = n R T (4marks) **QUESTION FIVE (20 MARKS)** 5. (I) State Hess's law (2 marks) (II) Calculate the enthalpy for this reaction (3 marks) $2C(s) + H_2(g) \rightarrow C_2H_2(g) \Delta H^\circ = ??? kJ$ Given the following thermochemical equations $C_2H_2(g) + 5/2O_2(g) \rightarrow 2CO_2(g) + H_2O(\ell) \Delta H^\circ = -1299.5 \text{ kJ}$ $C(s) + O_2(g) \rightarrow CO_2(g) \Delta H^{\circ} = -393.5 \text{ kJ}$ $H_2(g) + 1/2O_2(g) \rightarrow H_2O(\ell) \Delta H^\circ = -285.8 \text{ kJ}$ (III) (a) State Lechatelier's principle (1 marks) - (b) Using the equation below - $N_2(g) + 3H_2(g) \leftrightarrow 2NH_3(g) \Delta H$ -ve Explain the effect of the following on the position of the equilibrium i. Increase in pressure (2 marks) 0 ii. Decrease in temperature (2 marks) - (IV) Using hund's diagram explain whether the following elements are paramagnetic or diamagnetic (3 marks) - i. Chromium(24) - ii. Zinc(30) - iii. Iron(26) - (V) Using Mudulung rule, explain why 4S orbital is filled with electrons before the 3d orbital (2 marks) - (VI) The solubility product of silver chromate (Ag₂CrO₄) is 9×10^{-12} . Calculate the solubility of silver chromate (2 marks) - (VII) State any three factors that affect the rate of reaction (3 marks)