

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS
2020/2021 ACADEMIC YEAR
THIRD YEAR FIRST SEMESTER
MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE:

MAP314

COURSE TITLE:

NUMBER THEORY

DATE:

14/07/21

TIME: 9 AM -11 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

QUESTION ONE (Compulsory)

a) Let $a, b, c, d, m \in \mathbb{Z}, k \in \mathbb{N}$ with $a \equiv b \mod m$ and $c \equiv d \mod m$. Show that

$$a + c \equiv b + d \mod m$$
, $a - c \equiv b - d \mod m$,

$$ac \equiv bd \mod m, \quad a^k \equiv b^k \mod m$$

And if f is a polynomial with integral coefficients then $f(a) \equiv f(b) \mod m$. (5 marks)

- b) Show that the set $A = \{-40,6,7,15,22,35\}$ forms a complete residue set $mod\ 6$ while the set $B = \{-3,-2,-1,1,2,3\}$ $mod\ 6$ does not. (5 marks)
- c) Prove that the product of n consecutive integers is divisible by n! and hence show that $n^5 5n^3 + 4n$ is always divisible by 120. (5 marks)
- d) Find all the solutions in integers to 3456x + 246y = 234. (5 marks)
- e) State and prove the Euler's theorem (5 marks)
- f) Find the Remainder when 6¹⁹⁸⁷ is divided by 37 (5 marks)

QUESTION TWO

- a) Prove that $\log_2 3$ is irrational.
- b) Show that $n^2 + 23$ is divisible by 24 for infinitely many n. (5 marks)

(5 marks)

- c) State the Euclidean Algorithm process of finding greatest common divisor and use it to find the greatest common divisor 560 and 600. (5 marks)
- d) Solve the congruence $50x \equiv 12 \mod 14$ (5 marks)

QUESTION THREE

a) State and prove the Wilson's theorem.

(5 marks)

b) Prove that $n^4 + 4$ is prime only when n = 1 for all $n \in \mathbb{N}$

(5 marks)

c) Prove by induction that $\sum_{t=1}^{n-1} t(t+1) = \frac{n(n-1)(n+1)}{3}$, for all natural numbers $n \ge 2$

(5 marks)

d) find the last two digits of 3^{1000}

(5 marks)

QUESTION FOUR

a) State the well-ordering axiom and use it to show that there is no integer between 0 and 1.

(5 marks)

a) Solve the congruence $3x^2 + 3x + 2 = 0 \pmod{10}$.

(5 marks)

b) Prove that 7 divides $3^{2n+1} + 2^{n+2}$ for all natural numbers n

(5 marks)

c) Find x such that $x \equiv 3 \mod 5$ and $x \equiv 7 \mod 11$

(5 marks)

QUESTION FIVE

a) Prove by induction $1 + 3 + 5 + \dots + (2n - 1) = n^2$

(5 marks)

- b) Prove that if a, b, n are positive integers, then the greatest common divisor of a and b is the same as the greatest common divisor of a + nb and b. Use your results to find the greatest common divisor of 3456 and 246. (10 marks)
- c) State the Euclidean Algorithm process of finding greatest common divisor and use it to find the greatest common divisor 23 and 29. (5 marks)