

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF SCIENCE IN PHYSICS AND BACHELOR OF SCIENCE IN CHEMISTRY

COURSE CODE:

SPC 222

COURSE TITLE:

MODERN PHYSICS

DURATION: 2 HOURS

DATE:

10/05/2022

TIME: 9:00AM-11:00AM

INSTRUCTIONS TO CANDIDATES

- Answer QUESTION ONE (Compulsory) and any other TWO (2) Questions.
- Question ONE carries 30 MARKS and the remaining carry 20 MARKS each.
- ALL Symbols have their usual meaning

(3mks)

		the following					(2mks)	
	i) Time dilation							
	ii) Blackbody radiation							
b)	State	two	postulates	of	special	relativit	y principle	
	2	(2mks)						
c)	Briefl	Briefly outline the Lorentz tranformations for a frame moving along the x-direction						
	with		a		relative	2	velocity,v	
		(3mks)						
d)		Two observers, A on earth and B in a spacecraft whose speed is 2x108m/s, both set						
		their watches to the same time when the spacecraft is abreast of the earth. How much						
	time	must elapse	by A's	reckoning	before	the watches	differ by 1s?	
	(3mks							
e)		Ultraviolet light of wavelength 350nm and intensity 1w/m ² is directed at a potassium						
	surfac	surface. Find the maximum K.E of the photoelectrons given that the work function of						
	potass	sium			is		2.2eV	
		(3mks)						
f)	i) X-1	i) X-rays of wavelength $10x10^{-12}$ m are scattered from a target. Find the wavelength						
	of	x-r	ays	scatter	ed	through	45°	
	(3mks)							
	ii) state any three uses of x-rays						(3mks)	
g)	Diffe	Differentiate between						
	i) Pauli's exclusion principle and the uncertainity principle						(2mks)	
	ii) Nuclear fission and nuclear fussion						(2mks)	
	iii)	. A	Alpha	and		Beta	decay	
(2mks)								
h	h) Define halflife. Show that the halflife of a radioactive material is given by							
	$T_{\frac{1}{2}} = \frac{0.693}{\lambda}$							

QUESTION TWO (20MARKS)

- a) A meter stick appears only 60cm to an observer. What is its relative speed? How long does it take to pass the observer? (5mks)
- b) Show that the comton effect is given by $\lambda' \lambda = \lambda_c (1 \cos \phi)$ (10mks)
- c) Find the de Broglie wavelength of 46-g golf ball with a velocity of 30m/s. What is the physical meaning?
 (5mks)

QUESTION THREE (20MARKS)

- a) Show that for massles particles ($m_0=0$), the relation between their energy and mass is that E=Pc (10mks)
- b) Briefly describe how X-rays are produced (5mks)
- c) Deduce the Wein's law from Planck's law (5mks)

QUESTION FOUR (20MARKS)

- a) Show that in the limit $h \rightarrow 0$, the average value of energy of an oscillator is kT (10mks)
- b) Explain the Rutherford's model of an atom. Show that $E = \frac{-e^2}{8\pi\varepsilon_o r}$ (10mks)

QUESTION FIVE (20MARKS)

a) With a well labelled diagram, show that a change in path difference λ for Mitchelson and
 Moley experiment produces a fringe shift of unity

b) Deduce the Stefan's law from Planck's law (5mks)