



# **KIBABII UNIVERSITY**

### UNIVERSITY EXAMINATIONS 2021/2022 ACADEMIC YEAR

# FIRST YEAR SECOND SEMESTER MAIN EXAMINATIONS

FOR THE MASTERS OF SCIENCE (PHYSICS)

**COURSE CODE:** 

**SPH 821** 

**COURSE TITLE:** 

**ELASTIC & THERMAL PROPERTIES OF SOLIDS** 

**DURATION: 2 HOURS** 

DATE:

10/05/2022

TIME: 9:00AM-11:00AM

#### INSTRUCTIONS TO CANDIDATES

Answer any three Questions

- Indicate **answered questions** on the front cover.

Start every question on a new page and make sure question's number is written on each page This paper consists of 3 printed pages. Please Turn Over

KIBU observes ZERO tolerance to examination cheating

SPH 821: Elastic & Thermal Properties of Solids

#### **QUESTION ONE [20 Marks]**

a) Define the term cohesive energy of a molecule

[2 Marks]

b) The potential energy of a system of two atoms is given by the relation;

$$U = -A/r^2 + B/r^{10}$$

A stable molecule is formed with the release of 8eV energy when the interatomic distance is 2.8 Å. Find A and B and the force needed to dissociate this molecule into atoms and the interatomic distance at which the dissociation occurs

c) The potential energy U of a system of two atoms varies as a function of their distance of separation r as;

$$U = \frac{-A}{r^n} + \frac{B}{r^n}$$

Show that equilibrium:

- $r = r_0 = \left(\frac{mB}{nA}\right)^{1/m-n}$ [2Marks]
- the energy of attraction is m/n times the energy of repulsion and ii) [2 Marks]
- the bond energy is; iii) [2 Marks]  $U_0 = \frac{A}{r_n^n} \left( \frac{m-n}{m} \right)$

#### **QUESTION TWO [20 Marks]**

- a) Explain why steel is more elastic than rubber [2 Marks]
- b) Differentiate between plastic and elastic behavior of materials [2 Marks]
- c) Explain the molecular theory of elasticity [3 Marks]
- d) Using clearly labeled diagrams, discuss the various types of stress and strain [6 Marks]
- e) Calculate the maximum length of a steel wire that can be suspended without breaking under its own weight, if its breaking stress =  $4.0 \times 10^8 \text{Nm}^{-2}$ , density =  $7.9 \times 10^3 \text{kg m}^{-3}$  and g=  $9.80 \text{ ms}^{-2}$

[3 Marks]

f) A 10 kg mass is attached to one end of a copper wire of length 5m long and 1 mm in diameter. Calculate the extension and lateral strain, if Poisson's ratio is 0.25. Given Young's modulus of the wire =  $11 \times 10^{10} \text{N m}^{-2}$ [4 Marks]

### **QUESTION THREE [20 Marks]**

a) Show that the strain energy stored in an elastic body per unit volume of the material, which is also called strain-energy density is given by;

 $U_0 = \frac{1}{2}\sigma_{\mathcal{X}}\varepsilon_{\mathcal{X}}$ [4 Marks]

b) Given the following principal stresses at a point in a stressed material.

$$\sigma_x = 200N/mm^2$$
,  $\sigma_y = 150N/mm^2$ ,  $\sigma_z = 120N/mm^2$  Taking;

 $E = 210kN/mm^2$  and v = 0.3. Calculate the volumetric strain and the Lame's [6 Marks] Constants

c) The state of strain at a point is;

 $\varepsilon_x=0.001,\, \varepsilon_y=-0.003,\,\, \varepsilon_z=\gamma_{xy}=0,\,\,\, \gamma_{xz}=-0.004,\, \gamma_{yz}=0.001$ 

d) Determine the stress tensor at this point. Take  $E = 210 \times 10^6 kN/m^2$ and Poisson's ratio as 0.28. Also find the Lame's constant [10 Marks]

## **QUESTION FOUR [20 Marks]**

Discuss the Einstein's theory of specific heat of solids with regards;

|      | of specific field of solids with regards,                                    |           |
|------|------------------------------------------------------------------------------|-----------|
| i)   | Why was it necessary                                                         | [1 Mark]  |
| ii)  | Its assumptions                                                              | [4 Marks] |
| iii) | Derive the lattice heat capacity based on this model                         | -         |
|      |                                                                              | [9 Marks] |
| 11)  | Explain/Compare it with experimental observation at high and low temperature | [6 Marks] |

## **QUESTION FIVE [20 Marks]**

| a) | Explaining the assumptions clearly, derive the expression for lattice specific | c on the basis of Debye |
|----|--------------------------------------------------------------------------------|-------------------------|
| b) | model. Discuss the high and low temperature limits and define $T^3$ law        | [12 Marks]              |
|    | Compare the Einstein and Debye models                                          | [4 Marks<br>[4 Marks    |