



(Knowledge for Development)

# KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS
2021/2022 ACADEMIC YEAR
SECOND YEAR SECOND SEMESTER
MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE:

**MAT 252** 

COURSE TITLE:

**ENGINEERING MATHEMATICS II** 

DATE:

11/05/2022

**TIME**: 2:00 PM - 4:00 PM

# **INSTRUCTIONS TO CANDIDATES**

Answer Question One and Any other TWO Questions

TIME: 2 Hours

## **QUESTION ONE (30 MARKS)**

- a) If  $\overrightarrow{A} = xz^3 i 2x^2 yz j + 2yz^4 k$ , find  $\nabla \times \overrightarrow{A}$  at the point (1,-1,1). (3 marks)
- b) A particle moves so that its position vector is given by  $\vec{r} = 2\cos\omega t \, i + 2\sin\omega t \, j$ , where  $\omega$  is a constant. Show that the velocity  $\vec{v}$  of the particle is perpendicular to  $\vec{r}$ . (4 marks)
- c) If  $B = 3z^2 + 4i$ , find Laplacian of B (4 marks)
- d) If  $\phi(x, y, z) = 3x^2y y^3z^2$ , find  $\nabla \phi$  at the point (1, -2, -1). (3 marks)
- e) Show that for the complex variable z the following formula is valid:  $\sin 2y = 2 \sin y \cos y$  (3 marks)
- f) Evaluate  $\int_{v}^{\vec{r}} dv$  where v is the region bounded by the planes: x = 0, x = 2, y = 0, y = 3, z = 0, z = 4 and  $\vec{F} = xy \, i + z \, j x^2 \, k$ . (4 marks)
- g) Find the work done in moving a body along a straight line from (5,3,-1) to (3,-2,2) in a force field given by  $\vec{F} = 2i j + 4k$ . (3 marks)
- h) Find the following:  $2\left(\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}\right) \cdot 3\left(\cos\frac{\pi}{12} + i\sin\frac{\pi}{12}\right)$  (3 marks)
- i) Prove that  $u = e^{-x} (x \sin y y \cos y)$  is harmonic (3 marks)

# QUESTION TWO (20 MARKS)

- a) Find  $\nabla \phi$  if  $\phi = \frac{1}{r}$ . (4 marks)
- b) Classify according to type and determine the characteristics of the following p.d.e (4 marks)
- c) Calculate  $e^z$  when  $z = 1 + \frac{\pi}{4}i$  (3 marks)
- d) If  $\vec{F} = (2xy + z^3)i + x^2 j + 3xz^2 k$ 
  - (i) Show that it is a conservative force field (3 marks)
  - (ii) Find the scalar potential (3 marks)
  - (iii) Find the work done in moving an object in this field from (1,-2,1) to (3,-1,4) (3 marks)

## **QUESTION THREE (20 MARKS)**

a) If 
$$U = a + ib$$
 and  $V = c + id$ , prove that  $\overline{UV} = \overline{U} \times \overline{V}$  (5 marks)

- b) Find the Fourier series expansion for the following periodic function  $f(x) = x^2 : -\pi \le x \le \pi$  (8 marks)
- c) A particle moves along a curve whose parametric equations are  $x = e^{-t}$ ,  $y = 3\cos 2t$ ,  $z = 3\sin 2t$ , where t is time. Determine:
- (i) Velocity at time t (4 marks)
- (ii) Acceleration at time t (3 marks)

### **QUESTION FOUR (20 MARKS)**

- a) Show that the function  $f(x) = x^2 y^2 2ixy$  is analytic in the entire complex plane (5 marks)
- b) Given that:  $\phi = 2x^3y^2z^4$ , find  $\nabla \cdot \nabla \phi$  (5 marks)
- c) Find the characteristics of the following equation and reduce it to appropriate standard form and then obtain the general solution  $u_{xx} + 4u_{xy} + 4u_{yy} = 0$  (10 marks)

### **QUESTION FIVE (20 MARKS)**

- a) Verify Stoke's theorem for  $\overrightarrow{A} = 2z\underline{i} + 3x\underline{j} + 5y\underline{k}$  and S is upper part of the sphere given by  $z = 4 x^2 y^2$  (8 marks)
- b) A scalar field v = xyz exists over a curved surface defined by  $x^2 + y^2 = 4$  between the planes z = 0 and z = 3 in the first octant. Evaluate  $\int_{s} v d \overset{\rightarrow}{s}$  over this surface. (4 marks)
- c) Find the Fourier series representing  $f(x) = x : 0 \le x \le 2\pi$  (8 marks)