

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR YEAR FOUR SEMESTER SPECIAL/SUPPLIMENTARY **EXAMINATIONS** FOR THE DEGREE OF **BACHELOR OF SCIENCE**

COURSE CODE: STA 442

COURSE TITLE: MULTIVARIATE ANALYSIS

DATE: 18/01/2022

TIME: 11:00 AM - 1:00 PM

INSTRUCTIONS TO CANDIDATES

Answer Questions ONE and ANY OTHER TWO.

QUESTION ONE [30 MARKS]

- (a) Explain the following terms
 - (i) Principle component analysis (1mk)(ii) Random vector (1mk)
 - (iii) Multivariate data (1mk)
- (b) Given the joint pdf of random variables X, Y and Z as

$$f(x, y, z) = \begin{cases} e^{-x - y - z}; 0 < x < \infty, 0 < y < \infty, 0 < z < \infty \\ 0; elsewhere \end{cases}$$

Find the joint cumulative distribution function (cdf) of the three random variables. (5mks)

- (c) Let $\underline{x} = [1, 3, 2]$ and $\underline{y} = [-2, 1, -1]$ find
 - (i) The length of \underline{x} (1mk)
 - (ii) The angle between \underline{x} and \underline{y} (3mks)
 - (iii) The length of the projection of \underline{x} and \underline{y} (1mk)
- (d) Let $A = \begin{bmatrix} 3 & -\sqrt{2} \\ -\sqrt{2} & 2 \end{bmatrix}$
 - (i) Is A symmetric? Give reason (1mk)
 - (ii) Show that A is positive definite (4mks)
- (e) Consider the following n = 7 observations on p = 2 variables

x_1	3	4	2	6	8	2	5
x_2	5	5.5	4	7	10	5	7.5

- (i) Compute the sample means \bar{x}_1 and \bar{x}_2 and the sample variances S_{11} and S_{22} (4mks)
- (ii) Compute the sample covariance S_{12} and the sample correlation coefficient r_{12} and interpret these quantities (5mks)
- (iii) Display the sample mean array \bar{x} , the sample correlation array R and the sample variance-covariance S_{12} (3mks)

QUESTION TWO (20MARKS)

(a) Let \underline{x} be a p-variate random vector with mean vector $\underline{\mu}$ and variance covariance matrix Σ , show that $E(\underline{XX'}) = \Sigma + \underline{\mu}\underline{\mu}'$, hence show that $E(\underline{X'}A\underline{X}) = trace(A\Sigma) + \underline{\mu'}A\underline{\mu}$ where A is a symmetric matrix of constants. (8mks)

(b) Find the symmetric matrix A for a quadratic form $Q(X_1, X_2, X_3) = 9X_1^2 + 16X_1X_2 +$ $X_2^2 + 8X_1X_3 + 6X_2X_3 + 3X_3^2$. Hence obtain the expected value of $Q(X_1, X_2, X_3)$ and E(X'AX) given that $\mu = \begin{pmatrix} 6 \\ 7 \\ 2 \end{pmatrix}$ and $\Sigma = \begin{pmatrix} 1 & 2 & 5 \\ 2 & 4 & 3 \\ 5 & 2 & 0 \end{pmatrix}$ (12mks)

QUESTION THREE (20 MARKS)

- (a) Assume $\underline{x}' = (x_1, x_2, x_3)$ is normally distributed with mean vector $\underline{\mu} = (1, -1, 2)$ and variance matrix $\Sigma = \begin{bmatrix} 4 & 0 & -1 \\ 0 & 5 & 0 \\ -1 & 0 & 2 \end{bmatrix}$. Find the distribution of $3x_1 - 2x_2 + x_3$ (6mks)
- (b) Show that the sample mean is an unbiased estimator of μ and that the sample variance is biased estimator of matrix Σ (9mks)
- (c) Let x be a random vector having the covariance matrix

$$\Sigma = \begin{bmatrix} 4 & 1 & 2 \\ 1 & 9 & -3 \\ 2 & -3 & 25 \end{bmatrix}$$

Obtain

(i) Square root of
$$\Sigma = \left(V^{\frac{1}{2}}\right)$$
 (2mk)

(i) Square root of
$$\Sigma = \left(V^{\frac{1}{2}}\right)$$

(ii) Inverse of the square root $\Sigma = \left(V^{\frac{1}{2}}\right)^{-1}$ (1mk)

(iii) Correlation matrix
$$\rho$$
 defined by

$$\rho = \left(V^{\frac{1}{2}}\right)^{-1} \Sigma \left(V^{\frac{1}{2}}\right)^{-1} \tag{2mks}$$

QUESTION FOUR (20 MARKS)

(a) Find the maximum likelihood estimators of the mean vector μ and covariance matrix Σ based on (6mks) the data matrix

$$x = \begin{bmatrix} 4 & 1 \\ -1 & 3 \\ 3 & 5 \end{bmatrix}$$

 $x = \begin{bmatrix} 1 & 9 & 10 \\ 4 & 12 & 16 \\ 2 & 10 & 12 \\ 5 & 8 & 13 \end{bmatrix}$ (b) Given the data matrix

Define $X_c = X - 1 \overline{x}$ ' as the mean corrected data matrix.

(i) Obtain the mean corrected data matrix

(4mks)

(ii) Obtain the sample covariance matrix

(4mks)

(1mk)

- (iii) The generalized variance and hence verify that columns of mean corrected data matrix are linearly dependent. (3mks)
- (iv) Specify a vector $a' = [a_1 a_2 a_3]$ that establishes the linear dependence (3mks)

QUESTION FIVE (20 MARKS)

(a) Let \underline{x} be a random vector having the covariance matrix

$$\Sigma = \begin{bmatrix} 25 & -2 & 4 \\ -2 & 4 & 1 \\ 4 & 1 & 9 \end{bmatrix}$$

(i) Obtain the population correlation matrix (ρ) and $V^{\frac{1}{2}}$ (6mks)

(ii) Multiply your matrices to check the relation $V^{\frac{1}{2}}\rho V^{\frac{1}{2}}$ (4mks)

(b) Let $A = \begin{bmatrix} 9 & -2 \\ -2 & 6 \end{bmatrix}$

(iii) Is A symmetric? Give reason.

(iv) Obtain Eigen value (3mks)

(v) Show that A is positive definite (6mks)

END