

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2021/2022 ACADEMIC YEAR

FOURTH YEAR FIRST SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE IN

MATHEMATICS

COURSE CODE:

MAP 411

COURSE TITLE:

TOPOLOGY

DATE:

16/05/2022

TIME: 2:00 PM - 4:00 PM

INSTRUCTIONS TO CANDIDATES

Answer Any THREE Questions

TIME: 3 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS)

a.	Define the following			
	i. Cauchy sequence			(2marks)
	ii. Complete metric space			(1mark)
	iii. Closed subset			(2marks)
b.	What are the basic properties of open bal	ls		(5 marks)
c.	Show that in a metric space X , a subset $Z \subset X$ is closed if and only if for every sequence			
	$p_1, p_2, \dots \in Z$ that converges to a point p			(8marks)
d.	Show that a function $f: X \to Y$ is continuous if and only if for all open sets $U \subset X$, the			
٠.,	preimage $f^{-1}(U) \subset X$ is open			(12marks)
	premiage) (b) = n is epen			
Q	UESTION TWO (20 MARKS)			
a.	Define the following			
a.	i. Topological space			(1marks)
	ii. Discrete topology			(1marks)
	iii. Finer topology			(2marks)
	iv. Basis			(3marks)
b.		V		(3
0.	marks)			
c.	gland and the supported by a basis P is indeed a topology (10marks)			
Q	UESTION THREE (20 MARKS)			
a.	Define the following			
cu	i. Subspace topology			(2mark)
	ii. Product topology			(2marks)
	iii. Order			topology
	(4marks)			
	iv. Bounded metric space			(1marks)
b.	Show that T_A is indeed a topology on A. Further more if B is a basis for T_X then $\{B \cap A: B \in B\}$			
	is a	basis	for	T_A
	(6marks)			
c.	I D 1 1 Charry that	open sets of	T are all unions	of sets in B
	(5marks)			

QUESTION FOUR (20 MARKS)

- a. Define the following
 - i. Interior of a subset
 - ii. Boundary of a subset

(2marks) (2marks)

- b. Show that a function $f: X \to Y$ is continuous if and only if for all basis element $B \subset Y$ for the topology on Y, $f^{-1}(B) \subset X$ is open (4 marks)
- c. Show that a function $f: X \to Y$ is continuous if for every point in X, there is an open set of X on which f is a function (6marks)
- d. Show that $\bar{A} = A \cup \{\text{limit points of A}\}\$

(6marks)

QUESTION FIVE (20 MARKS)

- a. Define the following
 - i. Hausdorff topology (2marks)
 - ii. Homeomorphism (2marks)
 - iii. Dense subset (1marks)
 - iv. Embedding marks) (3
- b. Show that if X is Hausdorff, then every sequence converges to at most one limit. (6marks)

c. Show that a map $f: \mathbb{Z} \to \prod X_i$ is continuous if the component $f_i: \mathbb{Z} \to X_i$ is continuous for all

(6marks)