

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS **2020/2021 ACADEMIC YEAR**

THIRD YEAR FIRST SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF BSC (PURE PHYSICS)

COURSE CODE:

SPC 311

COURSE TITLE:

SOLID STATE PHYSICS

DURATION: 2 HOURS

DATE: 16/05/2022

TIME: 2:00PM-4:00PM

INSTRUCTIONS TO CANDIDATES

Answer **QUESTION ONE** (Compulsory) and any other two (2) Questions.

The following constants might be used: mass of electron= 9.1x10⁻³¹ kg; electronic charge=1.6x10⁻¹⁹ C; Planck's constant= 6.62x10⁻³⁴ JS; atomic mass of Lithium= 1.152x10⁻²⁶ kg; Boltzmann's constant = 8.63×10^{-5} eV/k

KIBU observes ZERO tolerance to examination cheating

	Q	UESTION ONE [30 Marks]	
		Define crystal lattice.	[2]
	b)	Give Bragg condition for direct lattice.	[4]
	c)	Determine the number of atoms per unit cell for the face centered cubic cell	[4]
	d)	Obtain an expression for interplanar spacing for simple cubic system.	[4]
	e)	A beam of electrons with kinetic energy 1KeV is diffracted as it passes thr	ough a polycrystallin
	•8	metal foil. The metal has a cubic crystal structure with a spacing of $1 \square$.	
	i)	Calculate the wavelength of the electrons	[4]
	ii)	Calculate the Bragg angle for the first order diffraction maximum.	[4]
	f)	Define a lattice plane (Crystal plane).	[2]
	g)	Calculate the Miller indices of crystal planes which cut through the crystal as	ces at
		i) (6a, 3b, 3c)	
	1.0	ii) (2a, -3b, -3c)	[4]
	h)	Describe briefly the formation of an ionic bond.	[2]
OI	TEC	TION TWO 120 M = 1 1	
Ųί		TION TWO [20 Marks]	
	a)	i) Define ionization energy and electron affinity.	[2]
		ii) Sketch (111) and (110) planes in simple cubic cell.	[2]
	b)	iii) Determine the structure factor in a body centered cubic CsCl unit cell	
		Show that Laue and Bragg condition are equivalent.	[5]
	c)	Calculate the distance between two lattice planes, which give first order diff.	
		26.4° with a wavelength $0.75\Box$.	[3]
	d)	Distinguish between Fineton's theory of specific heat of callide and Dela	2 41 1 1 1
d) Distinguish between Einstein's theory of specific heat of solids and Debye's define Einstein			
		[5]	temperature
QU	JES	TION THREE [20 Marks]	
		a) A beam of x-ray is incident on NaCl crystal whose lattice spacing is 2	.82x10 ⁻¹⁰ m. The first
		order Bragg reflection is observed at gracing angle 8.5°; What is the w	vavelength of x-rays?
		At what angle would second and third order Bragg reflection occur?	[5]
			[~]
		b) The Bragg angle corresponding to the first order reflection from (111)	planes in a crystal is
		30° when x-rays of wavelength 1.75 \square are used. Calculate the interato	mic spacing. [3]
		c) Bragg found that KCl crystal strong reflection from set of planes (100 obtained for angles 5.38 ⁰ ,7.62 ⁰ and 9.41 ⁰ . Show that KCl crystal has a), (110) and (111) are
		obtained for angles 5.38°,7.62° and 9.41°. Show that KCl crystal has a	simple cubic

KCl is an example of an ionically bonded crystal for which the cohesive energy per ion pair

d)

structure.

may be written as

$U(r) = A \exp(\frac{-r}{\rho}) - \frac{\alpha Z^2}{4\pi\varepsilon_0 r^2}$, where r is the nearest neighbor distance, Z is the ionic
---	--

charge.

- Explain the origins of the two terms and the meaning of the symbols A, ρ and α. [4]
- II) For a crystal of KCl, calculate the cohesive energy per ion pair relative to the separated neutral gas atoms, expressing your answer in units of eV. (For KCl, $A=2.05x10^{-15}$. $P=0.326\Box$, $r=3.147\Box$, $\alpha=1.748$, K has first ionization energy of 4.34 eV, Cl an electron affinity of 3.16 eV).

QUESTION FOUR [20 Marks]

- a) Which type of bonding is likely to be present in the following solids. Briefly explain the origins of the bonds.
 - I) Xenon(Xe) [2]
 - II) Cesium bromide (CsBr) [2]
 - III) Copper (Cu) [3]
 - IV) Silcon (Si) [2]
- b) Calculate the mass density of Lithium (Li), which has a lattice parameter of 0.350nm. (Lithium has a bcc crystalline structure) [4]
- c) Show that the atomic radius r a simple cubic crystal (sc) is given by r=a/2 and for a body centered cubic (bcc) crystal is given by $r = \frac{a\sqrt{3}}{4}$ where a is the lattice parameter. [7]

QUESTION FIVE [20 Marks]

- a) Discuss the Drude's classical Free electron model of conduction in metals. [10]
- b) The total energy of an ionic solid is given by an expression $E = \frac{-\alpha e^2}{4\pi\varepsilon_0 r} + \frac{B}{r^9}$ where α is the Madelung constant, r is the distance between the nearest neighbor in crystal and B is a constant. If r_0 is the equilibrium separation between the nearest neighbor, determine the value of B. [5]
- c) Calculate the packing fraction of the body-centered cubic structure. [5]