KIBABII UNIVERSITY # MAIN UNIVERSITY EXAMINATIONS ACADEMIC YEAR 2021/2022 ### SECOND YEAR SECOND SEMESTER EXAMINATIONS #### BACHELOR OF SCIENCE **COURSE CODE: SPC 221** COURSE TITLE: PHYSICAL OPTICS DATE: 13/05/2022 TIME: 9:00AM-11:00AM INSTRUCTIONS TO CANDIDATES Answer question ONE and any TWO of the remaining. Time: 2 hours KIBU observes ZERO tolerance to examination cheating #### **QUESTION ONE (30 MARKS)** | a) | | Physical optics | (2 marks) | |----|---|--|-----------| | b) | State t | he difference between Physical optics and Geometric optics | (2 marks) | | c) | Define following terms: | | | | | i) | a wave | (1 mark) | | | ii) | wavelength | (1 mark) | | | iii) | amplitude | (1 mark) | | | iv) | harmonic function | (1 mark) | | | v) | a phase | (1 mark) | | | vi) | Phase constant | (1 mark) | | | vii) | sinusoidal wave | (1 mark) | | | viii) | wave number | (1 mark) | | | ix) | wave speed | (1 mark) | | d) | What | are coherent sources of waves | (2 marks) | | e) | Differ | entiate between polarized and unpolarized light | (2 marks) | | f) | What are wavefronts | | (1 mark) | | g) | State any two uses of X-rays | | (2 marks) | | h) | | | (3 marks) | | i) | Name any three medical applications of lasers | | (3 marks) | | j) | State Fermat's principle (2 | | (2 marks) | | k) | State a | my two merits of an optical fibre | (2 marks) | | | | | | #### **QUESTION TWO (20 MARKS)** - a) Explain why two flashlights held close together do not produce an interference pattern at a distant screen? (3 marks) - b) Young's experiment is performed with sodium light of wavelength of 589nm. Fringes are measured carefully on a screen 100 cm away from the double slit and the center of the 20th fringe is found to be 11.78nm from the axis. Determine the separation of the two slits (5 marks) - c) Discuss how ultra-violet rays are produced, their uses and dangers (12 marks) ### **QUESTION THREE (20 MARKS)** - a) Why is the lens on a good quality camera coated with a thin film? (3 marks) - b) In Newton's rings experiment the radius of curvature of the lens is 5.0 m and its diameter is 2.0 cm. Determine: - (i) how many dark rings are produced? (3 marks) - (ii) how many dark rings would be seen if the arrangement was immersed in water of refractive index 1.33 (Assume the wavelength of light used is 589 nm) (3 marks) | c)Using Red light, state the effect of the following procedure on the appearanti)The separation distance of the slit is decreased | nce of the fringes (1 mark) | |---|--| | ii) The source slit is moved closer to the two slits | (1 mark) | | iii) the screen is moved closer to the slit | (1 mark) | | iv) blue light is used in place of the red light | (2 mark) | | v) one of the slit is covered up | (1 mark) | | vi) the source slit is made wider | (2 marks) | | QUESTION FOUR (20 MARKS) | | | a) Distortion in an optical fibre arises due to dispersion effects. mechanisms which contribute to the distortion in the light pulse in a file. b) Optical fibres have many advantageous features which are not four wire. Highlight any six merits of an optical fibre. c) A glass clad fibre is made with core glass of refractive index 1.5 and to give a fractional index difference of 0.0005. Find: i) The cladding index. ii) The critical internal reflection angle. iii) The external critical acceptance angle. iv) The numerical arpeture. | bre (3 marks)
nd in conducting
(6 marks) | | QUESTION FIVE (20 MARKS) | | | a) Name the five major categories of lasers? b) A laser beam of intensity 50 W/m² falls on a perfectly reflecting plane in The area of the mirror is 0.5 cm². Calculate: | | | i) Momentum imparted to the mirror in this time. ii) Average force acting on this mirror c) Discuss defense applications of lasers | (3 marks)
(3 marks)
(9 marks) | | | |