

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2021/2022 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE:

MAT 252

COURSE TITLE: ENGINEERING MATHEMATICS

DATE: 4/10/2021

TIME: 9:00 AM - 11:00 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

(30 MARKS) **QUESTION ONE**

- (a) Using the convergence test, show whether at $x_1 = 5$, the iterative formula will converge or not.
 - (4 marks) $x_{n+1} = \frac{x_n^2 + 3}{5}$ (i)
 - (4 marks) $x_{n+1} = 5 - \frac{3}{x_n}$
- (b) Use Newton-Raphson method to form an iterative formula that can be used to solve the (9 marks) equation $sinx - 1 + x^2 = 0$
- (7 marks) (c) Evaluate $\nabla^2(2^x)$
- (d) Prepare a divided difference table for the data below

Prepare a di	vided difference to	ible for the data of	10	10
X	3	7	9	10
f(y)	168	120	72	63
$I(\Lambda)$				(6 morks)

(6 marks)

QUESTION TWO (20MARKS)

- (a) Given that x_n is an approximation of the root of the equation $x^3 + 2x 1 = 0$
 - Use Newton-Raphson method to show that a better approximation, x_{n+1} , is given

by
$$x_{n+1} = \frac{2x^3 + 1}{3x^2 + 2}$$
 (6 marks)

- Taking $x_1 = 0.3$, determine the root to four decimal places. (6 marks) (3 marks)
- (b) Show that the equation $e^x 3x = 0$ has a root between 0 and 1
- (c) Use Simpson's one -third rule to evaluate $\int_0^3 \frac{1}{1+x^5} dx$, taking n=6 (5 marks)

QUESTION THREE

(20 MARKS)

(a) Given the data below

v	e data belov	0	1	2	3	4	3
					20	69	132
f(x)	-6	-3	0	9	30	0)	132

Construct a finite difference table (i)

(3 marks)

Use the finite difference table constructed in (i) above to evaluate f(-0.4) and (ii) (8 marks) f(3.5)

(b) Find the polynomial that fits the data

Find the poi	ynomial that fits	the data	3	4
X	1	2	3	
f(x)	-1	-2	-1	2

Hence use it to find f(1.7)

(6 marks)

(c.) Find the equation that can be solved using the iterative formula

$$x_{n+1} = \frac{2x_n}{3} + \frac{4}{x_n^2}$$

(3 marks)

QUESTION FOUR (20 MARKS)

(a) Find (i) $f^{1}(x)$ (ii) $f^{11}(x)$ at the point x=1.1 using the table below

X	1.0	1.2	1.4	1.6	1.8	2.0
0/ \	0	0.1	0.5	1 25	1.40	3.90
f(x)	U	0.1	0.5	1.23		

(8 marks)

(b) Find using the method of Regula falsi the solution of the equation

$$x^3 + x^2 - 3x - 3 = 0$$
 near 1 taking two steps correct to 3 decimal places

(8 marks)

(c.) Evaluate $E^2(2^X)$

(4 marks)

QUESTION FIVE (20 MARKS)

(a) Use Euler's method to approximate the value of $\frac{dy}{dx} = y - 2x$ given y(0)=1 in $0 \le x \le 2$ taking h=0.4 (8 marks)

(b) In the table below, one of the entries for f(x) is wrongly recorded, use finite differeces to locate this error and correct it

X	0	1	2	3	4
f(x)	3	6	13	18	24
1(X)					(0 marks)

(9 marks)

(c.) Define $\Delta f(x)$

(3 marks)