(II) ## **KIBABII UNIVERSITY** #### UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR ## FOURTH YEAR SECOND SEMESTER MAIN EXAMINATIONS FOR THE DEGREE OF B.ED (SCIENCE) AND BSC (CHEMISTRY) **COURSE CODE:** **SCH 400** **COURSE TITLE:** INDUSTRIAL CHEMISTRY **DURATION: 2 HOURS** DATE: 4/10/2021 TIME: 2:00-4:00PM #### INSTRUCTIONS TO CANDIDATES Answer **QUESTION ONE** (Compulsory) and any other two (2) Questions. Indicate answered questions on the front cover. Start every question on a new page and make sure question's number is written on each page. This paper consists of 4 printed pages. Please Turn Over KIBU observes ZERO tolerance to examination cheating ## Question one (30 marks) | a)
b)
c) | Using a produce Ethylen | re petrochemicals? By FOUR industrial uses of petro chemicals. Suitable diagram/schematic chart, show how primary petrochemicals are and in an oil refinery. The is widely used in petrochemical industry as raw material for the production and industrial chemicals. | [01]
[02]
[03]
on of | |----------------|--|---|-------------------------------| | e) | i.
ii.
iii.
Ethanol
produced | Ethylene is produced industrially by cracking . Explain the meaning of cracking. Differentiate between Thermal cracking and catalytic cracking. Explain the advantages of catalytic cracking over steam cracking. and Ethan-1,2-diol (Ethylene glycol) are some of the chemicals that can be a from ethylene. | [02]
[02]
[03] | | | i.
ii. | Write the chemical equations to show how ethanol and glycol are productlearly indicating the conditions. State TWO industrial uses for | [02] | | | | -Ethanol -Ethylene glycol. | [02]
[02] | | | i) | Ethylene can, treated differently form the following key monomers in industry. Vinyl chloride Styrene Draw structures for the texts. | | | | ii) | Draw structures for the two monomers. Why are additives added to polymers? Differentiate between stabilizers are plasticisers. | | | | iii)
iv) | State two forms of polysterene. The development of polymers have had a huge impact on society and environment; including manufacture of plastic bottles, disposable medical instruments and packaging materials. State any TWO advantages and disadvantages of plastics | [03]
[02] | g) ## Question two (20 Marks) | a) | What are the main components of glass? In what ratio are the main components mixed | ed?
[02] | |----------------|--|----------------------| | b) c) | Describe the processes involved in glass production?
How is colored glass made? | [02]
[01] | | d)
e)
f) | How is reflective glass made? Why does glass protect against UV rays? How are ceramics produced from glass? | [01]
[01]
[01] | | g)
h) | How are raw materials 'fed' into the furnace? Describe the method is used for the production of hollow glasses? | [02]
[02] | | i) | The following are methods of forming, used to produce sheet glass? Which operation does the below figure represent? Explain. | [02] | | | | | | k) | What is Glass transition temperature? | [02] | |----|---------------------------------------|------| | | | | Generally, materials experience either ductile or brittle type of fractures. Differentiate between Brittle and Ductile fractures. [02] ## **Question Three (20 Marks)** | a) | | | | |--|---|----------------------|--| | b) | i. State any Four classes of pesticides by target organism: ii. State any three types of pesticides according to chemical families. iii. Explain briefly how a pesticides works. | [02]
[02]
[04] | | | c)d)e) | i) What are 'carriers' as used in pesticides and pest control? ii) Examples of pesticide carriers. Discuss the environmental impact of using pesticides. Different techniques are employed by industry to recover priority pollutants during | [02]
[02]
[02] | | | | pesticide manufacturing. Explain any FOUR techniques of controlling pollutants by pesticides at source. | [04] | | | | Question four (20 Marks) | | | | | What are catalysts? Why is it necessary to add catalysts in the course of a reaction? | | | | b) | During synthesis for a homogeneous, organometallic catalyst, state THREE important | it
[03] | | | 2) | 1:00 | | | | c) | State any TWO and the processes where they are applied. | [02] | | | d) | | | | | u) | Steroselective, and chemoselective. Differentiate between stereoselectivity and | | | | | chemoselectivity. Explain how each affects the overall reaction. | [02] | | | e) | Explain the mechanism for chemisorption of CO on a metal (M) surface? | [02] | | | f) | What are catalytic converters. How do they work? | [02] | | | g) | | [02] | | | h) | What would be the main reason for replacing the PPh3 ligands in a catalyst by | | | | | $P(C_6H_4SO_3)_3$ ligands? | [02] | | | i) | Explain the use of Ziegler-Natta catalysis in industry: | [01] | | | i) | Explain the use of catalysts in the industrial Haber process for NH ₃ production? | [02] | | # **Question five (20 marks)** | a) | Define | the following terms | | |----|---------|--|--------------| | | i. | A dye | (Margaret | | | ii. | A pigment | [01 | | | iii. | Chromophore | [01 | | | iv. | Auxochrome | [01] | | b) | State a | ny four properties of a good dye. | | | c) | State a | ny EIGHT different classes of dyes. | [02] | | d) | Differe | ntiate between an acid dye and a basic dye. Give examples of each. | [04]
[02] | | e) | Methyl | orange is a typical Azo dye. | | | | i. | What are Azo dyes. | | | | ii. | State any two properties of MO. | [01] | | | iii. | State one key use of MO. | [01] | | | iv. | Why is MO not used as a fabric dye. | [01] | | f) | | dyc. | [01] | | | i) | What is the structure of a molecule of Methyl orange. | 1001 | | | ii) | Propose a mechanism for the synthesis of MO starting with benzene. | [02] | | | iii) | How can the colour of an Azo dye be modified? | [02]
[01] |