



(Knowledge for Development)

## KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR FOURTH YEAR SECOND SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE:

**MAT 404** 

COURSE TITLE: DIFFERENTIAL TOPOLOGY

**DATE:** 4/10/2021

TIME: 9:00 AM - 11:00 AM

# INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages, Please Turn Over.

## QUESTION ONE (30 MARKS)

- a). Define the following terms (2 mks) (i). n-dimensional manifold (2 mks) (ii). Tangent space (2 mks) (iii). Diffeomorphism (2 mks)
- (iv). Regular Value (2 mks)
- b). Prove that the function  $f: \mathbb{R} \to \mathbb{R}$  defined by  $x \mapsto x^3$  is a homeomorphism but not smooth.
- (4 mks) c). Prove that a subset of  $\mathbb{R}^n$  is a manifold
- d). Show that the map  $f(t)=(\cos t\,,\sin t)$  is a local diffeomorphism but not a global (4 mks)
- e). Given that  $f: X \to Y$  is a smooth map with regular value  $y \in Y$ , prove that  $f^{-1}(y)$  is a
- f). If the smooth map  $f: X \to Y$  is transversal to a submanifold  $Z \subset Y$ , prove that the pre-image  $f^{-1}(Z)$  is a submanifold of X.

## QUESTION TWO (20 MARKS)

- (4 mks) a). Differentiate between immersion and submersion
- b). Let Z be a pre-image of a regular value  $y \in Y$  under the smooth map  $f: X \to Y$ . Then the kernel of the derivative  $df_x: T_x(X) \to T_y(Y)$  at any point  $x \in Z$  is precisely the tangent space Z, (3 mks)
- $T_{x}(Z)$ . b). A cone is not a manifold. Explain.
- c). Define the term an embedding hence prove that an embedding  $f\colon X o Y$  maps X(8 mks) diffeomorphically into a submanifold of Y.

## QUESTION THREE (20 MARKS)

- a). Consider a unit circle  $x^2 + y^2 = 1$ .
  - (i). Define the term chart hence suitably define four charts on the unit circle that covers its.
  - (ii). Let  $T:(0,1)\to(0,1)$  be a transition map. Define the map T in terms of two charts in (i) above hence determine T(a) for  $a \in (0,1)$ .
- b). Prove that the dimension of the tangent space  $T_x(X)$  is equal to that of the manifold X. (5 mks)
- c). Determine the tangent space to the paraboloid defined by  $x^2 + y^2 z^2 = a$  at  $(\sqrt{a}, 0, 0)$ .

#### **QUESTION FOUR (20 MARKS)**

- a). Consider a circle  $S'=\{(x,y)\in\mathbb{R}^2:x^2+y^2=1\}.$ 
  - (i). Define two parametrizations  $\phi_1$  and  $\phi_2$  that maps the circle to the subset (-1,1) of the x axis (2 mks)
  - (ii). Show that  $\phi_1$  is locally invertible and its inverse is a projection on x —axis. (2 mks)
- b). (i). When is a function  $f: X \to Y$  transversal to a submanifold  $Z \in Y$ ? (2 mks)
- (ii). For which values of a does the hyperboloid  $x^2 + y^2 z^2 = 1$  intersect the sphere  $x^2 + y^2 + z^2 = a$  transversally? What does the intersection look like for different values of a? (5 mks)
- c). State the prove the Sard's theorem. (6 mks)
- d). Let  $f: X \to Y$  be a smooth function. Define the critical values of f, hence use Sards theorem, determine its measure (3 mks)

#### **QUESTION FIVE (20 MARKS)**

- a). Define the differential  $df_x$  hence express it in terms of the derivative of two parametrizations to its domain and codomain. (4 mks)
- b). Given that f and g and g are smooth maps of manifolds. Prove that  $d(g \circ f)_x = dg_{f(x)} \circ df_x$ . Use commutive diagrams for Illustration. (6 mks)
- c). Let  $S^1 \subset \mathbb{C}$  be the set  $\{z \in \mathbb{C} : |z| = 1\}$ . Define a map  $F: S^1 \to S^1$  by  $z \mapsto z^2$  where z = x + iy for  $i = \sqrt{-1}$ . Determine the differential df at i.