

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS
2020/2021 ACADEMIC YEAR
FOURTH YEAR SECOND SEMESTER

MAIN EXAMINATION
FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE: MAT 434

COURSE TITLE: DIFFERENTIAL GEOMETRY

DATE: 1/10/2021

TIME: 9:00 AM - 11:00 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE (30marks)

a). Define the following terms

i). Osculating plane

ii). Regular of a curve

iii). Plane product

iv). Torsion to a curve (1 mk)

b). State and derive the second fundamental form of a surface X = X(u, v) whose class is more or equal to 2. (6 mks)

c). Find the unit normal vector to the surface $X(u, \theta) = \langle u \cos \theta, u \sin \theta, 2\theta \rangle$. (6 mks)

d). Find the volume of the parallelepiped spanned by vectors $\mathbf{u}=(3,3,7), \mathbf{v}=(2,1,-1)$ and $\mathbf{w}=(4,2,-3)$ respectively.

e). Determine the first and the second curvature of the curve $r(t) = 2ti + 4\sin t j + 4\cos t k$. (10 mks)

QUESTION TWO (20marks)

a). Let γ be a curve lying on the surface X = X(u, v) where $u = u(t), v = v(t), a \le t \le b$. Prove that the length of the arc on the curve is given by $\int_a^b \sqrt{I} \ dt$ where I is the first fundamental form of a surface.

b). Find the torsion to the circular helix $r(t) = \langle 4\cos t, 4\sin t, 2t \rangle$ at $t = \frac{\pi}{2}$. (14 mks)

QUESTION THREE (20marks)

a). Determine the lines of curvature to the helicoid $r(s,t) = \langle s \cos t, s \sin t, bt \rangle$. (12 mks)

b). Determine the arc length of the curve $X(t) = \langle e^{2t} \cos t, e^{2t} \sin t, e^{2t} \rangle$ for $0 \le t \le \frac{\pi}{2}$. (5 mks)

c). Given the equation of the surface $X(u, v) = \langle 2u, 2u, uv \rangle$ find its first fundamental form. (3 mks)

QUESTION FOUR (20marks)

- a). State and proof the Frenet Serret formulas to the curve X = X(s). (10 mks)
- b). Find the equation of the tangent line and normal plane to the curve $X(t) = (1+t)\hat{e}_1 t^2\hat{e}_2 + (1+t^3)\hat{e}_3$ at t=1. (5 mks)
- c). Find the equation of the rectifying plane $X(t) = \langle t^2, t^2, (1+4t) \rangle$ at t=1. (5 mks)

OUESTION FIVE (20marks)

- a). Consider a parametrized surface $X(u,v) = \langle \cos u \sin v, \sin u \sin v, \cos v \rangle$ for $(u,v) \in [0,2\pi) \times [0,\pi]$. Determine the length of the curve $\left(u(t),v(t)\right) = \left(t,\frac{\pi}{2}\right)$ for $0 \le t \le 2\pi$ lying on the surface X(u,v).
- b). Find the unit binomial vector to the curve $X(t) = \langle 2t + 2t^3, 3t + \frac{t^2}{2}, 4t^2 \rangle$ at t = 1. (7 mks)
- c). Let X = X(u, v) be surface with directions given in parametric form as (du: dv) and $(\delta u, \delta v)$ whose tangential vectors are $dX = X_u du + X_v dv$ and $\delta X = X_u \delta u + X_v \delta v$ respectively. Prove that the angle between the two directions is given by

$$\theta = \cos^{-1}\left(\frac{I(d,\delta)}{\sqrt{I(d)}\sqrt{I(\delta)}}\right)$$

Where $I(d, \delta)$ is the first fundamental form of a surface.

(7 mks)