

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR SECOND YEAR SECOND SEMESTER MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND **BACHELOR OF SCIENCE**

COURSE CODE:

MAP 223

COURSE TITLE: ALGEBRAIC STRUCTURES II

DATE: 8/10/2021

TIME: 9:00 AM - 11:00 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

a) Define the following terms;		(2 1)
I) Binary relation		(2mks)
II) Inverse relation		(2mks)
III) Limit of a sequence		(2mks)
IV) Null sequence		(2mks)
V) Bounded sequence		(1mk)
VI) A ring		(3mks)
VII) A field		(3mks)
VIII) Complementary relation		(2mks)
b) Let R C X x Y be a binary_relation from X to Y. Let A, B C X be the sub	sets. Pi	rove that
the following statements are true.		
I) If A C B, then R (A) <u>C</u> R (B)		(3mks)
II) $R (AUB) = R (A) U R (B)$		(3mks)
III) R $(A \cap B) \subseteq R (A) \cap R(B)$		(3mks)
C) Let R_1 , $R_2 \subseteq X \times Y$ be relations from X to Y. If $R_1(x) = R_2(x)$ for all x the	nat belo	ongs to X,
show that $R_1 = R_2$		(4mks)
QUESTION TWO (20MKS)		
2. a) Prove that the sum of the first n natural numbers is given by the formula	ula:	
$1+2+3++n=\underline{n(n+1)}$		(5mks)
2		
b) Show that a composite integer n has a prime factor less than or equal to	\sqrt{n}	(5mks)
c) Prove that every convergent sequence is bounded		(5mks)
d) Prove that $n^3 + 2n$ is divisible by 3 for all $n \in$		(5mks)
QUESTION THREE (20MKS)		
a i) State 3 properties of a ring	(3mks	.)
ii) In a field a product of two non - zero elements is non zero, p	rove	(2mks)
iii) Prove that for any elements a, b and c of a field and non-zero elements	nt the c	ancellation
law ab=ac implies b=c holds (2mks)		
b i) define the following terms a group state 3 conditions that a group satisfied	sfies (4	mks)
ii) Order of a group	(2mks	s)
iii) Abelian group and give two examples	(3mks	s)
c) Let (a,*) be a group and let a, b, c belong to G, prove that the following	ghold (4mks)
i) $a * b = a * c$ implies $b=c$		
ii) $b * a = c * a$ implies $b=c$		

QUESTION ONE (30MKS)

QUESTION FOUR (20MKS)

a) i) Let $G=\{a_1,a_2,\dots,a_n\}$ be a finite group prove that in any row and column of the

multiplication table of G, each element of G appears once. (3mks)

ii) Let G be a group a belongs to G. Prove that <a> is a subgroup of G. (5mks)

iii) Define a subgroup (2mks)

b) Let G be a group, $H \le G$ and $K \le G$ prove that $H \cap K \le G$ (10 mks)

OUESTION FIVE (20mks)

(a) Let $f: G \to H$ be a homomorphism of groups. Denote the identity of G by e_G and the identity of H by e_H . Show that f

(b) Preserves identities: $f(e_G) = e_H$ (2mks)

(c) Preserves inverses: for every $x \in G$, $f(x^{-1}) = f(x)$ (8mks)

(d) The center z of a group G is defined by $z = \{z \in G \mid zx = xz \text{ for all } x \in G\}$, prove that z is a subgroup of G. (4mks)

(e) Let G be the group of all non-zero complex numbers a+ib, (a,b real but not both zero) under multiplication and let

H= $\{a+ib \in G \mid a^2+b^2=1\}$ verify that H is a subgroup of G. (6mks).