

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF MASTERS IN SCIENCE (PHYSICS)

COURSE CODE:

SPH 817

COURSE TITLE:

NUCLEAR AND PARTICLE PHYSICS

DATE: 4/10/2021

TIME: 8:00-10:00AM

INSTRUCTIONS TO CANDIDATES

TIME: 2 HOURS

Answer any THREE questions

KIBU observes ZERO tolerance to examination cheating

QUESTION ONE [20 MARKS]

a) Differentiate between the following terms-:

[5 marks]

- (i) Isobars and isotones
- (ii) Dynamical and beta instabilities
- (iii) Nuclear fusion and nuclear fission
- (iv) Pick up and stripping off nuclear reaction processes
- (v) Mass defect and binding fraction
- b) In Fermi gas nuclear model, using the thermodynamic relation $P = -\frac{\partial U}{\partial v}$ show [5 marks] that the pressure inside the nucleus is given by $\frac{2}{5}\rho_n E_F$ where ρ_n is the neutron density.
- c) A nuclear fission process is given by:- $^{235}_{92}U + ^{1}_{0}n \rightarrow ^{141}_{56}Ba + ^{92}_{36}Kr + 3^{1}_{0}n + Q$. [5 marks] Calculate the energy Q released during the process. [mass of $^{235}_{92}U = 235.04278u$, $m_n = 1.008665u$, mass of $^{141}_{56}Ba = 1409192u$ and mass of $^{92}_{36}Kr = 91.81719u$]
- d) How long does is take for 60% of a radioactive sample to decay if it has half [5 marks] life of 3.82days.

QUESTION TWO [20 MARKS]

Explain in detail any two nuclear models

[20 marks]

QUESTION THREE [20 MARKS]

Discuss the properties of the nucleus under the subheadings:-

[20 marks]

- (a) Its size, mass, volume and density.
- (b) Its composition
- (c) Its binding energy
- (d) Nuclear forces

QUESTION FOUR [20 MARKS]

In detail discuss and classify elementary particles

[20 marks]

QUESTION FIVE [20 MARKS]

a) The electric quadrupole moment of nuclear charge distribution which is symmetric about z-axis is given by:-

[10 marks]

 $\mu = \frac{1}{e} \int (3z^2 - r^2) \rho(x, y, z) dx dy dz$ for a uniformly charged ellipsoid of revolution defined by the equation: $\frac{x^2 + y^2}{a^2} + \frac{z^2}{b^2} = 1$. Show that the electric quadrupole moment is given by: $\mu = \frac{6z}{5} R_0^2 \left(\frac{\delta R_0}{R_0}\right)$.

Show that the Coulomb energy is given by:- $E_C = \frac{3}{5} \frac{kZ(Z-1)e^2}{R}$ for a proton in nucleus if the charge is uniformly spherically distributed. [10 marks]