

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF SCIENCE

SCH 326 COURSE CODE:

COURSE TITLE: SOFT MATTER CHEMISTRY

DURATION: 2 HOURS

DATE: 5/10/2021

TIME: 2:00-4:00PM

INSTRUCTIONS TO CANDIDATES

- Answer QUESTION ONE (Compulsory) and any other two (2) Questions.
- Indicate answered questions on the front cover. Start every question on a new page and make sure question's number is written on each page.

This paper consists of 4 printed pages. Please Turn Over

KIBU observes ZERO tolerance to examination cheating

Question 1

a) What is meant by the following terms;

[4mks]

- Soft matter i.
- Adsorption. ii.
- Unit Cell iii.
- Wetting. iv.

b) State three Characteristics of Soft matter systems.

[3mks]

- c) Given r = radius of atom and a = edge length of a unit cell, calculate Packing fraction of Face[3mks] centred cubic unit cell.
- d) By use of diagrams, describe contact angle in relation to hydrophilic and hydrophobic solid surfaces. [4mks]
- e) State three differences between physical and chemical adsorption

[3mks]

f) Explain three factors affecting adsorption.

[3mks]

g) Explain what is observed when electric current is passed through a colloidal sol.

[2mks]

h) Describe the structure of a Surfactant.

[2mks]

- A polymer sample has four different kinds of molar masses as 1.5×10^5 , 2.0×10^5 , 3.5×10^5 ,
 - 10⁵ present in the ratio 1:3:4:2. Calculate

[2mks]

Number average molecular weight. I.

[2mks]

Weight average molecular weight. II.

State two factors affecting glass transition temperature (Tg).

[2mks]

Question 2

a) Explain two factors affecting surface tension

[4mks]

b) State three applications of surface tension.

[3mks]

c) Explain two types of wetting of solid surfaces.

[4mks]

Given the following data on interfacial tensions (mN/m)

a) Given the	following data of			II-/water	Hexane/water
Interface	air/hexane	air/Hg	Hg/Hexane	Hg/water	TICALITY
		105	378	415	50
$\gamma/(mNm^{-1})$	18	485		angwore wh	

Calculate and the spreading coefficient and comment on your answers when;

hexane is in contact with the Hg/water interface i.

[3mks]

hexane is in contact with air/Hg surface.

[3 marks]

e) Explain three applications of adsorption.

[3mks]

Question 3

- a) Derive Langmuir adsorption isotherm equation, given the gas pressure at equilibrium is P and the equilibrium fraction of the surface covered by adsorbate is θ , [6mks]
- b) State four limitations of Langmuir Adsorption Equation.

[4mks]

c) Describe Freundlich adsorption isotherm

[8mks]

d) Calculate the amount of adsorption using Freundlich isotherm of the solute on activated charcoal in which the Slope value n = 0.2 and the distribution coefficient is k = 0.19. The equilibrium concentration of the adsorptive is 0.12.

[2mks]

Question 4

a) State four differences between thermoplastic and thermosetting polymers.

[4mks]

b) Below, molecular weight data for a polypropylene material are tabulated.

Xi	Wi
0.05	0.02
0.16	0.10
0.24	0.20
0.28	0.30
0.20	0.27
0.07	0.11
	0.05 0.16 0.24 0.28 0.20

Compute

i. the number average molecular weight. [5mks]

ii. the weight-average molecular weight. [5mks]

iii. the degree of polymerization

[2mks]

c) The intrinsic viscosity $[\eta]$ of a polymer solution is 3.6×10^{-1} dlg⁻¹ at 298 K. The constants K and α in Mark-Hauwink equation are 3.6×10^{-4} and 0.64 respectively. Calculate the molecular weight of the polymer. [4mks]

Question 5

- a) Explain the use of the following methods;
 - i. ultracentrifuging

[2mks]

ii. ultra filtration

[2mks]

b) Distinguish between hydrophilic sols and hydrophobic sols

[4mks]

- c) Give a brief explanation of the following concepts in colloid science. [2 Marks]
 - i. double layer
 - ii. zeta potential
- d) State four Assumptions of DLVO theory

[4mks]

e) Calculate the Debye lengths in 10 mol/m³ aqueous solutions of NaCl and AlCl₃ at 298K. (given, $\frac{N_A e^2}{\varepsilon \varepsilon_0 KT} = 5.404 \times 10^{15} \text{m}$ [6marks]