

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR FOURTH YEAR SECOND SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE: STA 442

COURSE TITLE: MULTIVARIATE ANALYSIS

DATE:

5/10/2021

TIME: 9:00 AM – 11:00 AM

INSTRUCTIONS TO CANDIDATES

Answer Questions ONE and ANY OTHER TWO.

QUESTION ONE (30 MARKS)

- [1 mark] (a) (i) What is a mean vector
 - [3 marks] (ii) Describe how multivariate data are arranged
- (b) The data below shows the scores of a sample of 15 students in mathematics, English and Kiswahili CATS in a certain school

$$X = \begin{bmatrix} 4 & 8 & 6 & 8 & 9 \\ 8 & 7 & 4 & 4 & 10 \\ 10 & 9 & 7 & 5 & 9 \end{bmatrix}$$

Obtain

- [3 marks] (i) Mean Vector [5 marks] (ii) Variance-Covariance matrix
- [3 marks] (iii)Correlation matrix
- (c) Let $\underline{x} = [5,1,3]$ and $\underline{y} = [-1,3,1]$. Find
 - [2marks] The length of \underline{x} (i) [3marks]
 - The angle between \underline{x} and y(ii) [2mark] The length of the projection of \underline{x} on \underline{y} (iii)
 - (d) A random sample of 10 was obtained from a bivariate normal population with mean vector μ and a known variance-covariance matrix $\Sigma_0 = \begin{bmatrix} 4 & 4.2 \\ 4.2 & 9 \end{bmatrix}$. Find the principal component and hence Test at $\alpha = 0.01$ level of significance for H_0 : $\mu = \mu$ vs H_1 : $\mu \neq \mu_0$ where $\mu_0 = (6.5)'$ [8 marks] and the sample mean vector is $\overline{\underline{X}} = (5.8, 5.2)'$

QUESTION TWO (20MARKS)

- (a) Let \underline{x} be a p-variate random vector with mean vector $\underline{\mu}$ and variance covariance matrix Σ , show that $E(\underline{XX'}) = \Sigma + \underline{\mu\mu'}$, hence show that $E(\underline{X'}A\underline{X}) = trace(A\Sigma) +$ (8mks) $\underline{\mu'}A\underline{\mu}$ where A is a symmetric matrix of constants.
- (b) Find the symmetric matrix A for a quadratic form $Q(X_1, X_2, X_3) = 9X_1^2 + 16X_1X_2 +$ $X_2^2 + 8X_1X_3 + 6X_2X_3 + 3X_3^2$. Hence obtain the expected value of $Q(X_1, X_2, X_3)$ and

$$E(X'AX)$$
 given that $\underline{\mu} = \begin{pmatrix} 1 \\ -4 \\ 3 \end{pmatrix}$ and $\Sigma = \begin{pmatrix} 1 & -2 & 10 \\ -2 & 4 & 3 \\ 10 & 3 & 9 \end{pmatrix}$ (12mks)

QUESTION THREE (20 MARKS)

(a) Let $X_1 \sim N_2(\mu_1, \Sigma)$ and $X_2 \sim N_2(\mu_2, \Sigma)$. Independent random samples of size 10 and 9 were taken from X_1 and X_2 respectively. The summary statistics are as follows:

$$\overline{\underline{X}}_1 = \begin{bmatrix} 55 \\ 34 \end{bmatrix}, \overline{\underline{X}}_2 = \begin{bmatrix} 60 \\ 43 \end{bmatrix}, S_1 = \begin{bmatrix} 20 & 10 \\ 10 & 10 \end{bmatrix}, S_2 = \begin{bmatrix} 4 & 16 \\ 16 & 9 \end{bmatrix}$$

(i) Obtain the pooled sample variance-covariance matrix S_p

[3marks]

(ii) Test the hypothesis at $\alpha = 0.05$ level of significance

$$H_0: \mu = \mu_0$$

$$H_0$$
: $\mu = \mu_1$

Where \sum is unknown

[5marks]

(b) For a bivariate normal distribution, use the data below to test at $\alpha = 0.05$ level the hypothesis

$$H_0: \boldsymbol{\mu} = (3.4, 6)'$$

 $H_1: \boldsymbol{\mu} = (3.4, 6)'$ Vs

$$\underline{X} = \begin{bmatrix} 3 & 4 & 5 & 6 & 2 \\ 9 & 5 & 7 & 2 & 8 \end{bmatrix}$$

[7 marks]

(c) Let \underline{x} be a random vector having the covariance matrix

$$\Sigma = \begin{bmatrix} 4 & 1 & 2 \\ 1 & 9 & -3 \\ 2 & -3 & 25 \end{bmatrix}$$

Obtain

(i) Square root of
$$\Sigma = \left(V^{\frac{1}{2}}\right)$$
 (2mk)

(ii) Inverse of the square root
$$\Sigma = \left(V^{\frac{1}{2}}\right)^{-1}$$
 (1mk)

(iii) Correlation matrix ρ defined by

$$\rho = \left(V^{\frac{1}{2}}\right)^{-1} \Sigma \left(V^{\frac{1}{2}}\right)^{-1} \tag{2mks}$$

OUESTION FOUR (20 MARKS)

a) Let \underline{x} be a trivariate random vector such that

be a trivariate random vector such that
$$E(\underline{x}) = 0 \text{ and } var(\underline{x}) = \begin{bmatrix} 5 & 2 & 3 \\ 2 & 3 & 0 \\ 3 & 0 & 2 \end{bmatrix}. \text{Find the expected value of the quadratic}$$
form

$$Q = (x_1 - x_2)^2 + (x_2 - x_3)^2 + (x_3 - x_1)^2$$
(5mks)

b) Using the variance-covariance matrix in part (g) find the variance covariance matrix of $Y = (Y_1, Y_2)$ where $Y_1 = x_1 + x_2$ and

$$Y_2 = x_1 + 2x_2 + x_3$$
 (5mks)

(a) Let the multivariate normal distribution be given by

$$f(y_1, y_2, y_3) = \begin{cases} K \exp{\frac{-1}{2}[q]} \\ 0, & otherwise \end{cases}$$

where K is a constant and

$$q = \left\{3y_{1}^{2} + 2y_{2}^{2} + 4y_{3}^{2} - 4y_{1}y_{2} + 8y_{1}y_{3} - 6y_{2}y_{3} + 12y_{1} + 10y_{2} + y_{3}\right\}$$

Find the variance-covariance matrix Σ and the mean vector μ .

(10 mks)

OUESTION FIVE (20 MARKS)

Observations on three responses are collected from two treatments as shown in the table below

Treatment	1	1	1	1	2	2
Response		•	•			
Y ₁	7	8	9	6	7	5
Y ₂	12	15	13	10	12	10
Y ₃	6	6	7	5	7	5

Obtain

(i) Between Treatment sum of squares

[6 marks]

(ii) Within treatment sum of squares

[5 marks]

(iii)MANOVA table

[2 marks]

(iv) Test at $\alpha = 0.05$ level of significance that there is no treatment effect.

[7 marks]