

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2020/2021 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER

SPECIAL/SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUATION AND
BACHELOR OF SCIENCE

COURSE CODE: MAA 123

COURSE TITLE: CALCULUS II

DATE: 29/09/2021 TIME: 11:00 AM- 1:00 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

QUESTION ONE

(30 MARKS)

(a)(i) Show that $\int v du = vu - \int u dv$

(2 marks)

- (ii) Hence or otherwise show that $\int x \tan^{-1} x dx = \frac{x^2}{2} \tan^{-1} x + \frac{\tan^{-1} x}{2} \frac{x}{2} + c_x (5 \text{ marks})$
- (b) (i) Express $\frac{\tan x}{1-3\tan^2 x}$ in patial fractions

(5 marks)

- (ii) Use partial fractions to find the integral $\int \left(\frac{2x+1}{(x^2-1)(x^2+2)}\right) dx$ (5 marks)
- (c) By sketching the graph, find the volume generated when a curve bounded by $y = x^3$ and the y axis is revolved through four right angles about the y axis where $1 \le x \le 2$
- (d) (i) Express $\tan 3x$ in terms of $\tan x$

(2 marks)

(ii) Determine $\int tan^3 x dx$

(2 marks)

(iii) Find $\int \sin^2 x \cos^3 x \, dy$)

(2 marks)

(e) Use the reduction formula for $I_n = \int_0^{\pi/2} \cos^n x dx$, to show that

 $(n \ge 2)$

$$I_{(n-4)} = \left(\frac{n-5}{n-4}\right) I_{(n-6)}$$

(4 marks)

QUESTION TWO

(20 marks)

(a) Find (i) $\int x^2 \sin^{-1} x \, dx$

(2 marks)

(ii) $\int \frac{1}{\sqrt{3-2x^2}} dx$

(2 marks)

(iii) $\int_{1}^{\sqrt{3}} \left(\frac{2x}{1+x^2} \right) dx$

(2 marks)

- (b) Find the area enclosed by the curve $y = \frac{1}{X+2}$ and
 - (i) the lines x = 3, x = 5

(1 marks)

QUESTION FOUR

(20 marks)

 $\int \left(x^{-3/4} + \sin^{-3}x\right) dx$ (a)

(7 marks)

Find the length of the curve given by $r = a(1 + \cos\theta)$

(5 marks)

Show that the volume of cone is $\frac{4}{3}\pi r^2 h$.

(4 marks)

(d) Show that for the area bounded by the radius r and a curve $r = f(\theta)$ is $A = \frac{1}{2} r^2 (\beta - \infty)$ (4marks)

Where $\alpha \le \theta \le \beta$

QUESTION FIVE

(20 marks)

The Equation of a curve in polar co-ordinates is $r = 2(\sin\theta + \cos\theta)$

(a) (i) Copy and complete the table for the domain $0 \le \theta \le \pi$ $\theta = 0 = \frac{\pi}{6} = \frac{\pi}{4} = \frac{\pi}{3} = \frac{\pi}{2} = \frac{2\pi}{3} = \frac{3\pi}{4} = \frac{5\pi}{6} = \pi$ $2 \sin \theta$ $2\cos\theta$ 2 1.73

(2marks)

(ii) Plot the curve for the domain $0 \le \theta \le \pi$

(2 marks)

(b) (i) Show that the area of sector of the curve $r = 2(\sin\theta + \cos\theta)$ bounded by

 $\theta = a$ and $\theta = b$ where $0 \le a < b \le \pi$ is given by $\int_a^b 2(1 + \sin 2\theta)d\theta$ (3marks)

- (ii)Determine the area of the sector of this curve bounded by $\theta = 0$ and $\theta = \pi/2$ (2marks)
- (iii)Determine the area bounded by the whole curve
- (c) Given that $I_n = \int \cos^n x \, dx$, use Integration by parts to show that

 $n I_n = \cos^{n-1} x \sin x + (n-1)I_{n-2}$, Hence evaluate $\int_0^{\pi/2} \cos^5 x \, dx$. (9 marks)