

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2019/2020 ACADEMIC YEAR

SECOND YEAR SECOND SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND **BACHELOR OF SCIENCE**

COURSE CODE:

MAA 225/MAT304

COURSE TITLE: COMPLEX ANALYSIS I

DATE:

10/02/2021

TIME: 8 AM -10 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

QUESTION ONE: COMPULSORY (30 MARKS)

- a. Given f(z) = u + iv is analytic in a region \mathbb{R} . Prove that u and v are harmonic in \mathbb{R} if they have continuous second partial derivatives in \mathbb{R} . (5 marks)
- b. Let $f(z) = \ln(1+z)$, where we consider the branch that has the zero value when z = 0, expand f(z) in a Taylor series about z = 0. Hence expand $\ln(1+z/1-z)$ in a Taylor series about z = 0 (6marks)
- c. Given that f(z)=u+iv is an analytic function and suppose $u(x,y)=e^x(x\sin y-y\cos y)$, find v(x,y) (9 marks)
- d. State and prove the Residue Theorem (5marks)
- e. Using Cauchy's integral formula, evaluate $\int_{c} \frac{2z^2 + z}{z^2 1} dz$ where C is |z 1| = 1 (5 marks)

QUESTION TWO (20 MARKS)

- a. Determine if the function $U(x, y) = e^{x} (y \cos 2y + x \sin 2y)$ is harmonic. (5 marks)
- b. Show that f'(z) for $f(z) = \overline{z}$ does not exist (5 marks)
- c. Verify the Cauchy-Riemann equations for $f(z)=e^z$ (5 marks)
- d. Evaluate $\int_{1+i}^{2+3i} (z^2 + z) dz$ along the line joining the points (1, -1) and (2, 3) (5marks)

QUESTION THREE (20 MARKS)

- a. Given that f(z)=u+iv is an analytic function and suppose that $u=x^2+4x-y^2+2y$, use the Cauchy-Riemann equations to determine the imaginary part v (6marks)
- b. Find the residues of $f(z) = \frac{z^2 2z}{(z+1)^2(z^2+4)}$ at all its poles in the finite plane and hence evaluate $\oint f(z)dz$ (9marks)
- c. Show that if f(z) is analytic and f'(z) is continuous at every point inside and on a simple closed curve C then $\int_C f(z)dz = 0$ (5marks)

QUESTION FOUR (20 MARKS)

a) If f(z) is analytic within and on simple closed curve C and if a is any point within C,

show that $f(a) = \frac{1}{2\pi i} \int_{c} \frac{f(z)}{z - a} dz$ (5 marks)

- b) Prove that $\lim_{z \to i} \frac{3z^4 2z^3 + 8z^2 2z + 5}{z i} = 4 + 4i$ (5 marks)
- c) Using the definition of derivative, find the derivative of $w = f(z) = z^2 2z + 1$ at $z = z_0$ and z = -1 (5 marks)
- d) Is the function $f(z) = \frac{3z^4 2z^3 + 8z^2 2z + 5}{z i}$ continuous at z = i? (5 marks)

QUESTION FIVE

- a) Evaluate $\int \bar{z}dz$ from z=0 to z=4+2i along the curve C given by $z=t^2+it$ (7 marks)
- b) State the De Moivre's theorem and use it to solve $Z^5 = 3 4i$ (5 marks)
- c) Evaluate $(-1+i)^{1/3}$ and represent first three solutions graphically (8 marks)