

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2019/2020 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER

SPECIAL/ SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND BACHELOR OF SCIENCE

COURSE CODE:

STA 112/STA 142

COURSE TITLE: INTRODUCTION TO PROBABILITY

DATE:

10/02/2021

TIME: 8 AM -10 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 4 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS)

a) Define the following terms as used in probability

(4marks)

- i. Mutually exclusives events
- ii. Exhaustive events
- iii. Compound events
- iv. Equally likely events
- b) Find the number of distinct permutations that can be formed from the words
 - i. PHYSIOLOGY

ii. STATISTICS (4marks)

- c) State four different school of thought on the concept of probability (4marks)
- d) State two theorems of probability (2marks)
- e) Show that $p[A^C] = 1 P[A]$ (2marks)
- f) In a class of 20 children, 4 of the 9 boys and 3 of the 11 girls are in the athletics. A person from the class is chosen to be in the egg and spoon race on sports day. Find the probability that the person chosen is a female or in the athletics team (4marks)
- g) The p.d.f. of discrete random variable Y is given by $P(Y = y) = Cy^2$ for y=0, 1,2,3,4. Given that C is a constant, find the value of c (3marks)
- h) A continuous random variable has p.d.f $f(x) = kx^2$ for $0 \le x \le 4$. Find the value of the constant k. Find also $p(1 \le x \le 3)$. (4marks)
- i) Suppose that a game is to be played with a single die. In this game, a player wins Ksh. 20 if a turns up and Ksh. 40 if a 4 turns up, he loses Ksh. 30 if a 6 turns up. Find the expected sum of money to be won. (3marks)

QUESTION TWO (20 MARKS)

a) The discrete random variable X has probability function

$$P(X = x) = \begin{cases} \frac{kx}{(x^2 + 1)}, & x = 2, 3\\ \frac{2kx}{(x^2 - 1)}, & x = 4, 5\\ 0, & \text{otherwise} \end{cases}$$

i) Find the value of k and write down the probability distribution of X (5marks)

ii) Find the probability that X is less than 3 or greater than 4 (2marks)

iii) Find F(3.2) (2marks)

iv) Find E[x] and var[x] (6marks)

b) Find the distribution function for the random variable of probability function

$$f(X=x) = \frac{1}{9}x^2, where 0 \le x \le 3$$
 (5 marks)

QUESTION THREE (20 MARKS)

a) A random variable X has a probability density function

$$f(x) = Ax(6-x)^2 0 \le x \le 6$$

= 0 elsewhere.

i. Find the value of the constant A (2marks)

ii. Find the mean (3marks)

iii. Find the variance (3marks)

iv. Find the mode (3marks)

v. Find the standard deviation (2marks)

b) X is a random variable with p.d.f as shown

$$f(X=x) = \frac{1}{8}x, where 0 \le x \le 4$$

Find the median and inter-quartile range (7marks)

QUESTION FOUR (20 MARKS)

a. The events A and B are such that p(A/B) = 0.4, p(A/B) = 0.25 and p(AnB) = 0.12.

i. Calculate the value of p(B) (2marks)

ii. Give a reason why A and B are not independent (2marks)

iii. Calculate the value of p(AnB') (3marks)

b. A group of girls at a school are entered for Advanced Level mathematics models. Each girl takes only module M₁ or module M₂ or both M₁ and M₂. The probability that a girl is taking

 M_2 given that she is taking M_1 is 1/5. The probability that a girl is taking M1 given that she is taking M_2 is 1/3. Find the probability that

- i. A girl selected at random is taking both M_1 and M_2 (6marks)
- ii. A girl selected at random is taking only M₁(4marks)
- c. If two events A and B are independent show that A'andB' also independent (3marks)

QUESTION FIVE (20 MARKS)

a) State and prove Bayes' Theorem

(7mark)

b) Three Urns of the same type have the following number of balls.

First urn: 2 black 1 white

Second urn: 1 black 2 white

Third urn: 2 black 2 white

One of the urns is selected and one ball is drawn. It turns out to be white. What is the probability of drawing a white ball again, the first one not having been returned? (4marks)

- c) There are three alternative proposal before a businessman to start a new project.
 - Proposal A: profit of Ksh 5M with a probability of 0.6 or a loss of ksh 80,000 with a probability of 0.4.
 - Proposal B: profit of Ksh 10M with a probability of 04 or a loss of ksh 200,000 with a probability of 0.6.
 - Proposal C: profit of Ksh 4.5M with a probability of 0.8 or a loss of ksh 50,000 with a probability of 0.2.

If he wants to maximize the profit and minimize the loss, which proposals should he prefer? (7marks)

d) State the difference between permutation and combination.

(2marks)