(13)

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2020/2021 ACADEMIC YEAR

FIRST YEAR FIRST SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF MASTER OF SCIENCE IN

APPLIED MATHEMATICS

COURSE CODE:

MAT 853

COURSE TITLE:

PDEI

DATE:

13/10/21

TIME: 9 AM -12 AM

INSTRUCTIONS TO CANDIDATES

Answer Any THREE Questions

TIME: 3 Hours

This Paper Consists of 2 Printed Pages. Please Turn Over.

QUESTION 1

(a) Solve the Laplace's equation, $U_{xx}+U_{yy}=0$ which satisfies the conditions,

$$U(0,y) = U(l,y) = U(x,0) = 0 \text{ and } U(x,a) = \sin \frac{n\pi x}{l}$$
 [10mks]

(b) Use method of characteristics to solve, $3U_{xx}+10U_{xy}+3U_{yy}=0$ [10mks]

QUESTION 2

A rod of length l with insulated sides is initially at a uniform temperature u_0 . Its ends are suddenly cooled at 0^0c and are kept at that temperature. Find the temperature function U(x,t). [20mks]

QUESTION 3

Give the general solution of the two dimensional wave equation,

$$U_{tt} = c^2(U_{xx} + U_{yy})$$
 [20mks]

QUESTION 4

Obtain the the solution of the equation $U_{xx} + U_{yy} = 0$ which is periodic in x in $0 \le x \le a$, $0 \le y \le b$ and satisfies the boundary conditions

$$u(0, y) = u(a, y) = 0$$
 $0 \le y \le b$

$$u(x,b) = 0 0 \le x \le a$$

$$u(x,0) = x 0 \le x \le a [20mks]$$

QUESTION 5

(a) Give D'Alembert's solution of the one dimensional wave equation,

$$U_{tt} = c^2 U_{xx}. ag{7mks}$$

(b) Use the method of of separation of variables to solve the one dimensional wave equation, $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$. [20mks]