



(Knowledge for Development)

#### KIBABII UNIVERSITY

### UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR

## **END OF SEMESTER EXAMINATIONS** YEAR THREE SEMESTER ONE EXAMINATIONS

# FOR THE DEGREE OF **BACHELOR OF SCIENCE COMPUTER SCIENCE**

COURSE CODE : CSC 351E

COURSE TITLE :

**ADVANCED ASSEMBLY** 

LANGUAGE AND MICROPROCESSORS

DATE: 12/07/2021 TIME: 2.00 P.M. - 4.00 P.M

**INSTRUCTIONS TO CANDIDATES** 

ANSWER QUESTIONS ONE AND ANY OTHER TWO

### QUESTION ONE [COMPULSORY] [30 MARKS]

| a) | Explain the functions of the following pins of 8085uP                                       |           |  |
|----|---------------------------------------------------------------------------------------------|-----------|--|
|    | i) INTR                                                                                     | [1 mark]  |  |
|    | ii) READY                                                                                   | [1 mark]  |  |
|    | iii) <i>ĪNTĀ</i>                                                                            | [1 mark]  |  |
|    | iv) Reset out                                                                               | [1 mark]  |  |
| b) | Clearly distinguish between Von Neumann and Harvard architecture models.                    |           |  |
|    |                                                                                             | [4 marks] |  |
| c) | Give two advantages of each of the architectural models in que                              |           |  |
| 1  |                                                                                             | [4 marks] |  |
| d) | Name and explain the two types of Programmable Input/Outpu                                  |           |  |
|    |                                                                                             | [4 marks] |  |
| e) | Write an Assembly Language Program to divide contents of ac                                 |           |  |
| •  | register. The resulting quotient be stored in C register while the remainder be stored in D |           |  |
|    | register. Let your program reside from memory address 2040.                                 | [5 marks] |  |
| Ð  |                                                                                             |           |  |
| f) | Identify the type of instruction in each of the instructions below                          |           |  |
|    | i) ANI 80H                                                                                  | [1 mark]  |  |
|    | ii) LDAX D                                                                                  | [1 mark]  |  |
|    | iii) JC 4100H                                                                               | [1 mark]  |  |
|    | iv) SIM                                                                                     | [1 mark]  |  |
| g) | A 512KB memory chip has 8 pins for data. Find:                                              |           |  |
|    | i) The organization                                                                         | [1 mark]  |  |
|    | ii) The number of address pins for this memory chip.                                        | [2 marks] |  |
|    | iii) The address range of the chip                                                          | [2 marks] |  |
|    | QUESTION TWO [20 MARK                                                                       | (S)       |  |
| a) | Determine the addressing mode in each of the assembly instruction below:                    |           |  |
| ω) | 1. ADD B                                                                                    | [1 mark]  |  |
|    | 2. LXI SP, 20B0H                                                                            | [1 mark]  |  |
|    | 3. LDAX B                                                                                   | [1 mark]  |  |
|    | 4. ORA D                                                                                    | [1 mark]  |  |
|    | 5. STA 4030H                                                                                | [1 mark]  |  |
|    | 6. MOV C, B<br>7. RST 4                                                                     | [1 mark]  |  |

7. KS1 4 [1 mark]
8. NOP [1 mark]
b) Below is a Hexcode for a certain program. Write its equivalent Assembly Language.

| (  | 3AH 10H 30H 47H 3AH 11H 30H 80H 32H 12H c) Name and discuss any three techniques of Direct Memory | 30H 76H [5 marks]<br>Access. [7 marks] |
|----|---------------------------------------------------------------------------------------------------|----------------------------------------|
|    |                                                                                                   |                                        |
|    | QUESTION THREE [20 M                                                                              |                                        |
| 8  | a) Show the contents of the accumulator and the status of the                                     | flag bits after each of the following  |
|    | operations:                                                                                       |                                        |
|    | i) 36H+45H                                                                                        | [4 marks]                              |
|    | ii) 20H – 20H                                                                                     | [3 marks]                              |
|    | iii) 78H-A9H                                                                                      | [3 marks]                              |
| b  | A certain program is needed to count from 255 to zero, the                                        | n upwards from zero to F0H. For        |
|    | every count it gives an output at PORT 21H. Write a progr                                         | am to achieve this task. Let the       |
|    | program run in an endless loop.                                                                   | [10 marks]                             |
|    | QUESTION FOUR [20 MA                                                                              |                                        |
| a  | A 8-bit memory requires 3KB of RAM and 1KB of ROM.                                                | Draw the memory map assuming           |
|    | ROM starts from 0000h and is followed by RAM                                                      | [5 marks]                              |
| b  | i) Write an algorithm of a program to exchange the co                                             |                                        |
|    | and 4000H                                                                                         | [3 marks]                              |
|    | ii) Write an assembly program to achieve the task base                                            |                                        |
|    |                                                                                                   | [4 marks]                              |
| c) | Define the tools below as used in programming languages                                           |                                        |
|    | i) A loader                                                                                       | [2 marks]                              |
|    | ii) A linker                                                                                      | [2 marks]                              |
|    | iii) Compiler                                                                                     | [2 marks]                              |
|    | iv) Assembler                                                                                     | [2 marks]                              |
|    |                                                                                                   |                                        |
|    | QUESTION FIVE [20 MAR                                                                             | RKS                                    |
| a) | What is an interrupt?                                                                             | [2 marks]                              |
| b) | Identify five events that may lead to generation of an interru                                    |                                        |
| c) | Distinguish between hardware interrupt and software interrupt                                     |                                        |
|    |                                                                                                   | [4 marks]                              |
| d) | Discuss the procedures that takes place in checking and servi                                     |                                        |
|    |                                                                                                   | [9 marks]                              |
|    |                                                                                                   |                                        |