



(Knowledge for Development)

### **KIBABII UNIVERSITY**

UNIVERSITY EXAMINATIONS
2020/2021 ACADEMIC YEAR
FOURTH YEAR SECOND SEMESTER
MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND BACHELOR OF SCIENCE (MATHEMATICS)

COURSE CODE: MAT 422

COURSE TITLE: PDE II

**DATE**: 6/10/2021

**TIME:** 2:00 PM - 4:00 PM

### **INSTRUCTIONS TO CANDIDATES**

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

# QUESTION ONE COMPULSORY (30 MARKS)

- Define the following terms giving an example in each; (a)
  - Linear homogeneous partial differential equation.
  - (4 marks) Linear non-homogeneous partial differential equation. ii.
- Solve the wave equation by D'Alembert's method (b)

Solve the wave equation by D'Alembert's metric.
$$\frac{\partial^2 y}{\partial t^2} = C^2 \frac{\partial^2 y}{\partial x^2} \text{ where C is a constant}$$
(6 marks)

Using method of characteristics solve the semi-linear partial differential equation. (c)

Jsing method of characteristics solve the schir filed 
$$y$$
  $x = \frac{\partial u}{\partial x} - y \frac{\partial u}{\partial y} = u$  given  $u = x^2$  on  $y = x, 1 \le y \le 2$  (8 marks)

Determine the complete solution of (d)

Determine the complete solution of

i. 
$$\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial y^2} + \frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} = e^{2x+3y}$$
ii. 
$$\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial y^2} + \frac{\partial z}{\partial x} - \frac{\partial z}{\partial y} = e^{2x+3y}$$

ii. 
$$\frac{\partial^2 z}{\partial x^2} + 3 \frac{\partial^2 z}{\partial x \partial y} + 2 \frac{\partial^2 z}{\partial y^2} = x^2 + y$$
 (6 marks)

## QUESTION TWO (20MARKS)

(a) Solve the wave equation  $\frac{\partial^2 y}{\partial t^2} = a^2 \frac{\partial^2 y}{\partial x^2}$  under the conditions u = 0, when x = 0 and (13 marks)  $x = \pi, \frac{\partial u}{\partial t} = 0$  when t = 0 and  $u(x, 0) = x, 0 < x < \pi$ 

(b) Solve 
$$\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial y^2} + \frac{\partial z}{\partial x} + 3\frac{\partial z}{\partial y} - 2z = 0$$

# QUESTION THREE (20 MARKS)

- (2 marks) Distinguish between reducible and irreducible linear differential operator. (a)
- Reduce the partial differential equation to its canonical form (b)

Reduce the partial and 
$$y^{2} \frac{\partial^{2} u}{\partial x^{2}} - 2xy \frac{\partial^{2} u}{\partial x \partial y} + x^{2} \frac{\partial^{2} u}{\partial y^{2}} = \frac{1}{xy} \left( y^{3} \frac{\partial u}{\partial x} + x^{3} \frac{\partial u}{\partial y} \right)$$
(8 marks)

(c) Solve 
$$\frac{\partial^3 z}{\partial x^3} - 7 \frac{\partial^3 z}{\partial x \partial y^2} - 6 \frac{\partial^3 z}{\partial y^3} = \sin(x + 2y)$$
 (8 marks)

#### **QUESTION FOUR (20 MARKS)**

(a) A rod of length L with insulated sides is initially at uniform temperature  $100^{\circ}C$ . Its ends are suddenly cooled to  $0^{\circ}C$  and are kept at that temperature, find the temperature function u(x, t).

(13 marks)

- (b) Determine the characteristic curves for  $\frac{\partial^2 u}{\partial x^2} + 4 \frac{\partial^2 u}{\partial y^2} + x + y = 0$  (4 marks)
- (c) Solve  $\frac{\partial z}{\partial x} \frac{\partial^2 z}{\partial y^2} = 0$  (3 marks)

#### **QUESTION FIVE (20MARKS)**

Given the partial differential equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x \partial y} - 2\frac{\partial^2 u}{\partial y^2} + 1 = 0 \text{ in } 0 \le x \le 1, y > 0 \text{ with } u = \frac{\partial u}{\partial x} = x \text{ on } y = 0$$

- i. Classification the PDE (2 marks)
- ii. Reduce it to canonical forms and solve it (18 marks)