

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2020/2021 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF MASTER OF SCIENCE IN

PURE MATHEMATICS

COURSE CODE: MAT 830

COURSE TITLE: REPRESENTATION THEORY OF GROUPS

DATE: 8/10/21 **TIME**: 9 AM -12 AM

INSTRUCTIONS TO CANDIDATES

Answer Any THREE Questions

TIME: 3 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over.

MAT 843: REPRESENTATION THEORY EXAM

August 2021

Answer any Three questions neately and precisely. Each question carries 20 marks

Question One

(a) Define the term representation of a finite group G (2mks)

(b) Let G be a group of permutations of $X = \{1, 2, 3, \dots n\}$. For an ordered basis $\{v_1, v_2, \dots v_n\}$ basis of an n-dimensional vector space V over any field F, define $T(g)v_i = v_{g(i)}$. Show that T is a representation of G on V. (4mks)

(c) Let S_3 be the Symmetric group on 3 points $\{1,2,3\}$ generated by two elements (12) and (123).

(i) Find the permutation representation of the generators of S_3 . (6 mks)

(ii) Write out permutation matrix representation of S_3 of degree 2. (It is enough to give the matrix representations of the generators.) (8 mks)

Question Two

(a) Let G be a finite group. State the row and column orthogonality relations for a character table. (4 mks)

(b) For the rest of the question, G will be a group of order 20 with 5 conjugacy classes. Here are the first two lines of its character table.

- (i) What are the dimensions of the remaining representation of G. (4 mks)
- (ii) Find a another 1–dimensional representation of G (4mks)
- (iii) Find the remaining entries of the character table. (8 mks)

Question Three

(a) If T is a representation of G Define on V. Define what is meant by the following;

(i) A T-invariant subspace. (2mks)

(ii) T is irreducible (2mks)

(iii) T is indecomposable (2mks)

(iv) T is completely reducible (2 mks)

(b) Suppose $F \subseteq \mathbb{C}$ and \hat{T} is a F-representation of a group G. Define \hat{T}^* , the contragradient representation of T via

$$\hat{T}^* = (\hat{T}(x^{-1}))^t$$

for every $x \in G$, where t represents the transpose of a matrix. Show that \hat{T} is a matrix representation of G [i.e. $\hat{T}^*(xy) = \hat{T}^*(x)\hat{T}^*(y) \ \forall x,y \in G$] (4 mks)

(c) Compute the character table of $G = C_2 \times C_2$ (8mks)

Question Four

(a) Define what is meant by the following

(i) A character of a representation T of a group G. (2 mks)

(ii) An irreducible character χ of a representation. (2mks)

(b) Let χ_1 and χ_2 be two F— characters of G. Give the equation of the inner product of the two characters $<\chi_1,\chi_2>$ (3 mks)

(c) Show that characters are class functions i.e $\chi(y^{-1}xy) = \chi(x)$ (4mks)

(d)(i) Compute the character table of the Quartenion group $G = Q_8 = \{\pm 1, \pm i \pm j, \pm k\}$ of order 8. (8 mks) (ii) State the order of the commutator subgroup of Q_8 (1mks)

Question Five

(a) Let S and T be two representations of G.

(i) what is meant by saying S is equivalent to T (2 mks)

(ii) If S and T are equivalent F-representations of G with characters χ and ψ respectively. Show that $\chi=\psi$ (4mks)

(b)Let G be the Alternating group A_4 .

(i) Write down the conjugacy classes of A4 (4mks)

(ii) compute the character table of $G = A_4$ (10mks)