



# **KIBABII UNIVERSITY**

### UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR

# FOURTH YEAR SECOND SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF BSC (PHYSICS)

COURSE CODE:

**SPH 414** 

**COURSE TITLE:** 

**QUANTUM MECHANICS II** 

**DURATION: 2 HOURS** 

DATE: 5/10/2021

TIME: 8:00-10:00AM

#### INSTRUCTIONS TO CANDIDATES

Answer QUESTION ONE (Compulsory) and any other two (2) Questions.

- Indicate answered questions on the front cover.

Start every question on a new page and make sure question's number is written on each page This paper consists of 3 printed pages. Please Turn Over

## KIBU observes ZERO tolerance to examination cheating

The following rules of commutator algebra may be used where necessary

$$[A, B] = AB - BA = -[B, A] = 0$$

$$\begin{bmatrix} A,B+C \end{bmatrix} = \begin{bmatrix} A,B \end{bmatrix} + \begin{bmatrix} A,C \end{bmatrix}$$

$$[A+B,C] = [A,C] + [B,C]$$

$$[A,BC] = [A,B]C + B[A,C]$$

$$[AB,C] = A[B,C] + [A,C]B$$

$$\left[ A, \left[ B, C \right] \right] + \left[ B, \left[ C, A \right] \right] + \left[ C, \left[ A, B \right] \right] = 0$$

SPH 414: QUANTUM MECHANICS II

**QUESTION ONE [30 Marks]** 

- a) Show that any two components of the spin angular momentum operator are not simultaneously measurable. [6 Marks]
- b) Simplify the arbitrary products of spin half operators;  $S_x S_y, S_z S_y, S_z S_x$ . [3 Marks]
- c) Show that;
  - i)  $J_{+}J_{-} = J^{2} J_{z}^{2} + \hbar J_{z}$  [3 Marks]
    - $S_x S_y = \frac{1}{2} i\hbar S_z$  [2 Marks]
  - ii) Find the commutators;  $[\sigma_+ \sigma_-]$  [2 Marks]
- d) Verify that  $S^2 \alpha = \frac{3}{4} \hbar^2 \alpha$  and  $S_z \alpha = \frac{\hbar}{2} \beta$ , where symbols have their usual meaning. [4 Marks]
- e) Show that;
  - i)  $[J_z, J_+] = J_+$  (iii)  $[J_x, J_y] = iJ_z$  [4 Marks]
- f) State the Pauli spin matrices  $\sigma_x \sigma_y \sigma_z$  and show that  $\sigma_x \sigma_y = -\sigma_y \sigma_x = i\sigma_z$  [6 Marks]

### **QUESTION TWO [20 Marks]**

- a) Write down an expression for the z-component of angular momentum,  $L_z$ , of a particle moving in the (x, y) plane in terms of its linear momentum components  $p_x$  and  $p_y$ . [2Marks]
- b) Using the operator correspondence  $P_x = -i\hbar \frac{\partial}{\partial x}$  etc., show that;

$$L_Z = -i\hbar \left( x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right)$$

Hence show that  $L_Z = -i\hbar \frac{\partial}{\partial \varphi}$ , where the coordinates (x,y) and (r,  $\varphi$ ) are related in the usual way.

- (2) Given that  $L = r \times p$ , show that  $\{L_{x_i}L_{y_i}\} = i\hbar L_z$  [4Marks]
- d) Use the rules of the commuter algebra to find the values of;  $[L_x, p_y]$  and  $[L^2, L_x]$  [7Marks]

### **QUESTION THREE [20 Marks]**

Obtain the angular momentum matrices for  $J^2$ ,  $J_z$ ,  $J_x$  and  $J_y$  for the case of j = 1 particles.

[20 Marks]

### **QUESTION FOUR [20 Marks]**

a) What is perturbation theory?

[2 Marks]

- b) Show that the first order correction energy E<sup>(1)</sup> for a non degenerate level is just a perturbation H' averaged over the corresponding unperturbed state of the system. [12 Marks]
- c) Given the unperturbed Hamiltonian for the linear harmonic oscillator  $H_0 = \frac{p^2}{2m} + \frac{1}{2}kx^2, k > 0$  and the unperturbed energy levels  $E_n^{(0)} = \hbar\omega\left(n + \frac{1}{2}\right)$  n=0, 1, 2 ..., Write the perturbed eigen functions and eigen values

#### **QUESTION FIVE [20 Marks]**

| a) | Write down the Pauli matrices $\sigma_x$ , $\sigma_y$ and $\sigma_z$                        |   | [3Marks] |
|----|---------------------------------------------------------------------------------------------|---|----------|
| b) | Obtain the values of $\sigma_x^2$ , $\sigma_y^3$ and $\sigma_x^2 + \sigma_y^2 + \sigma_z^2$ | × | [6Marks] |
|    | Obtain the values of $\sigma_x \sigma_y$ , $\sigma_y \sigma_z$ and $\sigma_z \sigma_x$      |   | [6Marks] |
|    | Show that                                                                                   |   | [5Marks] |

$$J^2 = \frac{3}{4} \, \hbar^2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

THIS IS THE LAST PRINTED PAGE