

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2019/2020 ACADEMIC YEAR

FOURTH YEAR SECOND SEMESTER SUPPLEMENTARY EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE:

SCH 431

COURSE TITLE: NATURAL PRODUCTS CHEMISTRY

TIME: 11-1 Pm

INSTRUCTIONS TO CANDIDATES:

TIME: 2 Hours

Answer question ONE and any TWO of the remaining

1(a) Describe the molecular ion peak in mass spectrometry	[2mks]
(b) Explain the principle behind UV absorption in UV spectroscopy	[4mks]
(c) Compare bend and stretch vibrations IR spectroscopy	[4mks]
 (d) With a specific example, explain the concept of chemical shielding in N spectroscopy (e) Describe charge transfer transitions in UV spectroscopy (f)Describe the matrix assisted laser desorption ionization (MALDI) (g) Describe the concept of ring currents in NMR spectroscopy 	[4mks] [4mks] [4mks] [4mks]
(h)	[4mks]

QUESTION TWO (20 Marks)

2(a)Explain the field ionization techniques in mass spectrometry [6mks]

(b) Illustrate retro Diels-Alder fragmentation in mass spectrometry [2mks]

(c) Below is a mass spectrum of an organic compound whose structure is indicated on the spectrum.

(c) Give structures of fragment ions associated with M/Z values, 29, 43, 57, 72

[6mks]

(d) Explain the nitrogen rule in mass spectrometry

[6mks]

QUESTION THREE (20 Marks)

3(a) Explain the principles behind the following spectroscopic techniques [4mks]

(i) UV spectroscopy

(ii) IR spectroscopy

(b) Explain a "forbidden" transition in UV spectroscopy

[2mks]

(c) Explain the working principle of a UV detector

[4mks]

(d) Using woodward-Fieser rules for dienes, determine the maximum absorption wavelength (λ_{max}) of the following compounds [8mks]

(f) State any two solvents suitable in UV spectroscopy

[2mks]

QUESTION FOUR (20 Marks)

4(a) Discuss the effect of solvent polarity in IR spectroscopy

[6mks]

(b) List any two solvents suitable in IR spectroscopy

[2mks]

(c) The IR spectrum of hexanoic acid is shown below. Identify the functional groups associated with given peaks in the compound [12mks]