

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2019/2020 ACADEMIC YEAR

FOURTH YEAR SECOND SEMESTER SUPPLEMENTARY EXAMINATIONS

FOR THE DEGREE OF BSC (PHYSICS)

COURSE CODE:

SPH 414

COURSE TITLE:

QUANTUM MECHANICS II

DURATION: 2 HOURS

DATE: APRIL 2020

12/202

TIME: 2-4Pm

INSTRUCTIONS TO CANDIDATES

- Answer **QUESTION ONE** (Compulsory) and any other two (2) Questions.

- Indicate answered questions on the front cover.

Start every question on a new page and make sure question's number is written on each page This paper consists of 3 printed pages. Please Turn Over

KIBU observes ZERO tolerance to examination cheating

The following rules of commutator algebra may be used where necessary

$$[A,B] = AB - BA = -[B,A] = 0$$

$$[A, B+C] = [A, B] + [A, C]$$

$$[A+B,C] = [A,C] + [B,C]$$

$$[A,BC] = [A,B]C + B[A,C]$$

$$[AB,C] = A[B,C] + [A,C]B$$

$$\left[A, \left[B, C\right]\right] + \left[B, \left[C, A\right]\right] + \left[C, \left[A, B\right]\right] = 0$$

SPH 414: QUANTUM MECHANICS II

QUESTION ONE [30 Marks]

- a) Using a test function f(x), show that the canonical commutation relation between distance x and linear momentum p is given by $[x,p] = i\hbar$ (4mks)
- b) Angular momentum is represented classically by $\overline{L} = \overline{r} \times \overline{p}$ show that orbital angular momentum is represented in the position representation of wave mechanics by the vector operator $\overline{L} = -i\hbar(\vec{r} \times \nabla)$. (5mks)
- c) Show that angular momentum L, is self-adjoint i.e. $L_x = L_x^{\dagger}$, $L_y = L_y^{\dagger}$, $L_z = L_z^{\dagger}$. (3mks)
- d) Define the term perturbation? (2mks)
- List two categories of perturbation theory? (2mks)
- f) Reduce the following arbitrary product of spin ½ operators?
 - $S_xS_yS_zS_yS_zS_x$ (4mks)
 - $S_xS_vS_xS_vS_zS_x$ ii) (4mks)
- Show that

$$s^2 \alpha = \frac{3}{4} \hbar^2 \alpha$$
i. (2mks)

$$s_x \alpha = \frac{1}{2} \hbar \alpha$$
 (2mks)

QUESTION TWO [20 Marks]

Using canonical commutation relation and the commutator algebraic relation to show that

al commutation relation and the commutation target and
$$[L_x, L_y] = i\hbar L_x$$

(7mks)

b) $[L_x, y] = i\hbar z$ (6mks)

b)
$$[L_x, y] = i\hbar z$$
 (6mks)

(a)
$$\left[L_x, p_y\right] = i\hbar p_x$$
 (7mks)

QUESTION THREE [20 Marks]

Show that

a)
$$J^{2} = \frac{3}{4} \hbar^{2} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 (10mks)

$$J_x = \frac{1}{2} \hbar \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
 (10mks)

SPH 414: QUANTUM MECHANICS II

QUESTION FOUR [20 Marks]

- a) The matrices representing S_x, S_y, S_z , which acts on the spin wave function c for S=1/2, are $s = \frac{1}{2}\hbar\sigma$ with $\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, and $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Show that $\begin{bmatrix} \sigma_x, \sigma_y \end{bmatrix} = 2i\sigma_z$ $[\sigma_z, \sigma_x] = 2i\sigma_y$, and $\left[\sigma_{y},\sigma_{z}\right]=2i\sigma_{x}$ (12mks)
 - b) Given the unperturbed Hamiltonian for the linear harmonic oscillator $H_0 = \frac{p^2}{2m} + \frac{1}{2}kx^2, k > 0$ and the unperturbed energy levels $E_n^{(0)} = \hbar \omega \left(n + \frac{1}{2} \right)$ n=0, 1, 2 ..., Write the perturbed eigenfunctions and eigenvalues (8mks)

QUESTION FIVE [20 Marks]

- a) Write down an expression for the z-component of angular momentum, Lz, of a particle moving in (2mks) the (x, y) plane in terms of its linear momentum components p_x and p_y .
- Using the operator correspondence $P_x = -i\hbar \frac{\partial}{\partial x}$ etc., show that;

$$L_Z = -i\hbar \left(x \frac{\partial}{\partial y} - y \frac{\partial}{\partial x} \right)$$

Hence show that $L_Z=-i\hbar\frac{\partial}{\partial\varphi}$, where the coordinates (x,y) and (r, φ)are related in (4mks) the usual way.

c) Assuming that the wave function for this particle can be written in the form $\psi(r, \varphi)$ $=R(r)\Phi(\varphi)$ show that the z-component of angular momentum is quantized with eigen (14mks) Value \hbar , where m is an integer.

THIS IS THE LAST PRINTED PAGE