KIBABII UNIVERSITY ## UNIVERSITY EXAMINATIONS 2019/2020 ACADEMIC YEAR FOURTH YEAR SECOND SEMESTER SUPLEMETARY EXAMINATIONS FOR THE DEGREE OF B.ED (SCIENCE) COURSE CODE: **SPH 425** COURSE TITLE: THERMODYNAMICS AND SELECTION OF **MATERIALS** DATE: 5/2/21 TIME: 11-1 Pm INSTRUCTIONS TO CANDIDATES TIME: 2 Hours Answer question ONE and any TWO of the remaining # QUESTION ONE (30 marks) compulsory | (a) State and briefly discuss the diffusion equation (b) (i) Define the term crystal defect (ii) Briefly describe the following point defects: Frenkel type; Schot and Impurity type (c) Outline the application of Ellingham diagrams in the extractive metal industry | (6mks) | |---|--| | (d) The solubility product constant of Lead (II) oxide is 1.4 x 10⁻⁸ at 25⁰. Determine the ΔG for the dissociation of Lead (II) oxide in water (R 8.314J/k.mol), hence or otherwise, comment on the dissociation of Lead (II) oxide in water (R oxide at equilibrium. (e) What do you understand by the term Ellingham diagram (f) Discuss the following properties of metals: (i) Ductility/Formability | (2mks) | | (ii) Weldability (iii) Machinability (iv)Tensile strength (g) Discuss situations involving entropy changes | (2mks)
(2mks)
(2mks)
(2mks)
(4mks) | ## QUESTION TWO (20 marks) | (a) A spherical constant temperature heat source of radius, r₁, is at the centre of solid sphere of radius, r₂. Find out the rate which is proportional to heat tran(b) (i) Compared to the sphere. | afam - 1 | |---|----------| | (b) (1) Compute the possible in . | (8mks) | | finding (g = 9.81ms ⁻² , specific heat capacity of water going over Niagara Falls, | | | 49.4m high (g = 9.81ms ⁻² , specific heat capacity of water going over Niagar (ii) Briefly discuss a factor that would tend to prove the state of th | (3mks) | | would tell to prevent this possible rise | (2mks) | | (c) Briefly describe vacancy crystallography | | | (d) Briefly discuss diffusion in semiconductors | (3mks) | | | (4mks) | #### **QUESTION THREE (20 marks)** (a) Define the following terms: (i) Sintering (3mks) (ii) Single-phase alloys (iii) Multi-phase alloys (iii) Briefly discuss metal and ceramic sintering (6mks) (iv) Outline the procedure for ceramic sintering (5mks) (v) Discuss the advantages of powder technology (6mks) **QUESTION FOUR (20 marks)** (a) Briefly discuss various corrosion control methods (b) Discuss the following traces of (12maks) (b) Discuss the following types of corrosion: (i) Pitting corrosion (ii) Crevice corrosion (4mks) (4mks)