

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2019/2020 ACADEMIC YEAR

FOURTH YEAR SECOND SEMESTER

Special/supplementary EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND

BACHELOR OF SCIENCE (MATHEMATICS)

COURSE CODE:

MAT 422

COURSE TITLE:

PDE II

DATE:

02/02/2021

TIME: 2 PM -4 PM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 2 Printed Pages. Please Turn Over.

QUESTION ONE (30 MARKS)

(a) Solve the differential equation
$$\frac{\partial^4 z}{\partial x^4} + \frac{\partial^4 z}{\partial y^4} - 2 \frac{\partial^4 zy}{\partial x^2 \partial y^2}$$
 (10Mks)

(b) Find the general solution of the equation
$$Xu_X - Yu_Y + u = X$$
 (10Mks)

(c) Solve the equation
$$r - 2s + 2t = 0$$
 (10Mks)

QUESTION TWO (20 MARKS)

- (a) State the laws due to Fourier that derive the equation of heat conduction in a rod (2Mks)
- (b) Derive the Laplace equation $\nabla^2 u = 0$ in three dimension (8Mks)

Find a particular integral of the equation
$$\frac{\partial^2 z}{\partial x^2} - \frac{\partial z}{\partial y} = e^{2x+y}$$
 (10Mks)

QUESTION THREE (20 MARKS)

(a) Find the solution of the initial boundary value problem for the heat equation $k^2 u_{xx} = u_t$ satisfying the following initial boundary conditions

$$u_{x}(0,t) = 0 u_{x}(\pi,t) = 0$$
 0 \le t < \infty
And $u(x,0) = x$ 0 \le x \le \pi

(b) Find a surface satisfying the differential equation $t = 6x^3y$ which contains the two lines y = 0 = z and y = 1 = z (10Mks)

OUESTION FOUR (20 MARKS)

a) A variable z is defined in terms of the variable x and y as the results of elimination from the equations.

$$z = t_x + y f(t) + g(t)$$

$$0 = x + yf(t) + g(t)$$

Prove that whatever the functions f and g may be the equation $rt - s^2 = 0$ is satisfied.

(10Mks)

b) Reduce the equation
$$r + x^2t = 0$$
 to canonical form. (10Mks)

QUESTION FIVE (20 MARKS)

- a) Find the general solution of the equation $r 2 \sin x t \cos^2 x q \cos x = 0$ (10 Mks)
- b) Solve the equation s = 2x + 2y (10 Mks)