

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2020/2021 ACADEMIC YEAR

FOURTH YEAR FIRST SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF EDUCATION AND BACHELOR OF SCIENCE

COURSE CODE: MAT 403

COURSE TITLE: COMPLEX ANALYSIS I

DATE: 16/7/2021 **TIME**: 9 AM - 11 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over

QUESTION ONE (Compulsory)

- a) Define the following terms; (6 marks)
 - i. Laurent series,
 - ii. Harmonic conjugate,
 - iii. Singularity
 - iv. Define a Schwartz-Christoffel transformation
 - v. A conformal mapping w = f(z) and hence state the condition the function is to satisfy for it to be conformal.
- b) Find the residue of the following functions; (9 marks)

i.
$$f(z) = \frac{4-3z}{z^2-z}$$

ii.
$$f(z) = \frac{e^z}{(z^2+1)z^2}$$

iii.
$$f(z) = \frac{\sin z}{(z^2 + z + 1)\cos z}$$

- c) Show that $\oint_C \frac{\sin z}{z^4} dz = -\frac{\pi}{3}i$, where c: |z| = 1, described in a positive direction. (5 marks)
- d) Show that the function $\emptyset = x^3 3xy^2 + 2y$ can be a real part of analytic function. Find the imaginary part of the analytic function. (5 marks)
- e) Discuss the singularity of the following function: $f(z) = \frac{z \cos z}{(z-1)(z^2+1)^2(z^2+3z+2)}$

(5 marks)

QUESTION TWO

- a) Expand the function $f(z) = \frac{1}{(z+1)(z+2)}$ in a Laurent series in the powers of (z-1) valid in the annular domain containing the point $z = \frac{7}{2}$. (5 marks)
- b) Let f(z) be analytic inside and on a simple closed curve C except at a pole a of order m inside C. Prove that the residue of f(z) at a is given by

$$a_{-1} = \lim_{z \to a} \frac{1}{(m-1)!} \frac{d^{m-1}}{dz^{m-1}} \{ (z - a)^m f(z) \}$$
 (5 marks)

c) Find
$$I = \int_0^{2\pi} \frac{\cos 3\theta d\theta}{5 - 4\cos \theta}$$
 (10 marks)

QUESTION THREE

a) Evaluate
$$\int_{-\infty}^{\infty} \frac{z^2 + 3}{(z^2 + 1)(z^2 + 4)} dz$$
 (5 marks)

b) Find the residue of the function
$$f(z) = \frac{z^2 - 2z}{(z+1)^2(z^2+4)}$$
. (5 marks)

c) Find a Schwartz-Christoffel transformation that maps the upper half plane H to the inside of a triangle vertices -1, 0 and i. (5 marks)

d) Evaluate
$$\int_0^{2\pi} \frac{d\theta}{3 - 2\cos\theta + \sin\theta}$$
 (5 marks)

QUESTION FOUR

a) expand $f(Z) = \frac{1}{(z+1)(z+3)}$ in a Laurent series valid for

i.
$$1 < |Z| < 3$$
 (4 marks)

ii.
$$|Z| < 3$$
 (2 marks)

iii.
$$0 < |Z+1| < 2$$
 (2 marks)

iv.
$$|Z| < 1$$
 (2marks)

b) Evaluate
$$\int_{-\infty}^{\infty} \frac{z^2 dz}{(z^2+1)^2(z^2+2z+2)}$$
 (5 marks)

c) Determine the Laurent series of
$$f(z) = (z - 3) \sin \frac{1}{z+2}$$
 (5 marks)

QUESTION FIVE

a) Find
$$I = \int_0^{2\pi} \frac{\cos 2\theta d\theta}{5 - 4\sin \theta}$$
 (5 marks)

b) Using residues, show that
$$\int_{-\infty}^{\infty} \frac{x^2 + 3}{(x^2 + 1)(x^2 + 4)} dx = \frac{5}{6}\pi$$
 (5 marks)

c) Consider the contour C defined by x = y, x > 0 and the contour C_1 defined by x = 1, $y \ge 1$. Maps these two curves using $w = \frac{1}{z}$ and verify that their angle of intersection is preserved in size and direction. (10 marks)