

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2019/2020 ACADEMIC YEAR

FIRST YEAR FIRST SEMESTER
SUPP/SPECIAL EXAMINATIONS

FOR THE DEGREE OF B.ED (SCIENCE)

COURSE CODE: SPH 115

COURSE TITLE: HEAT AND THERMODYNAMICS I

DATE: 9/02/202/TIME: 2:00 - 4:00 PM

INSTRUCTIONS TO CANDIDATES

TIME: 2 Hours

1. Attempt question **ONE** and any other **TWO** questions.

2. Question one carries 30 marks while the rest carry 20 marks each

KIBU observes ZERO tolerance to examination cheating

Question One (30 marks)

- a) Define a thermodynamic system. (1mark)
- b) Differentiate between intensive and extensive quantities giving an example for each (4 marks)
- c) Given the following constants for the van der Waals equation for carbon dioxide $a = 0.37Nm4mol^{-2}$ and $b = 43Cm^3mol^{-1}$. Using the Van der Waals equation find the pressure exerted by carbon dioxide gas at $0^{\circ}C$ if it has a specific volume of $0.55Lmol^{-1}$. (3 marks)
- d) A cast iron cylinder ingot, 2m long, has a diameter of 0.5m. Determine the radiant flux from its surface whose temperature is 1000° C (emissivity of cast iron ingot is $\varepsilon = 0.95$ and black body radiation coefficient, $C_0 = 5.67 \text{Wm}^2 \text{K}^{-1}$). (4 marks)
- e) i) Define the term work. (1 mark)
 - ii) A fluid of volume $0.05 \mathrm{m}^3$ is contained behind a piston at pressure of $10^6 N/m^2$. After a reversible expansion of constant pressure, the final volume is $0.2 m^3$. Calculate the work done by the fluid. (2 marks)
- f) When a gas expands adiabatically its volume is doubled while its absolute temperature is decreased by a factor of 1.32. Calculate the degree of freedom for the gas molecule. (3 marks)
- g) State the second law of thermodynamics. (1 mark)
- h) An ideal gas absorbs $5 \times 10^3 J$ of energy while doing work of $2 \times 10^3 J$ to its surroundings. Find the change in internal energy. (3 marks)
- i) A reversible engine has an efficiency of $\frac{1}{6}$. When the temperature of the heat sink is reduced by $62^{\circ}C$ its efficiency gets doubled. Find the temperatures of the source and the sink. (3 marks)
- j) State the third law of thermodynamics. (1 mark)
- k) Determine the value of the specific entropy of water at100°C. (3 marks)
- I) Show that for a monoatomic ideal gas undergoing adiabatic process $TV^{2/3} = C$ where C is a constant. (3 marks)

Question Two (marks)

a) Define forced convection. (1 mark)

- b) Air, at a temperature, $t = 24^{\circ}\text{C}$ flows perpendicularly to the outer tube wall at a mean velocity of 2ms⁻¹. The tube, 2.5m long, has an outer diameter of 20mm and tube wall temperature $t_w = 130^{\circ}\text{C}$. Given that the corresponding density is $\rho = 0.995 \text{kgm}^{-1}$; the specific heat capacity at a constant pressure, $C_p = 1.009 \text{kJkg}^{-1}$ and the thermal conductivity, $\lambda = 0.03 \text{Wm}^{-1}\text{K}^{-1}$ and the dynamic viscocity $\eta = 20.82 \times 10^{-6} \text{Pas}$. Calculate:
 - i) the Prandtl number (Pr) and the Reynolds number (Re). (4 marks)
 - ii) the heat transfer rate \dot{Q} by convection of the moving air if K = 0.615, m = 0.466 and C = 0.8134. (6 marks)
- c) i) Define thermal radiation (1 mark)
 - ii) A cast iron cylinder ingot, 2m long, has a diameter of 0.5m. Determine the radiant flux from its surface whose temperature is 1000° C (emissivity of cast iron ingot is $\varepsilon = 0.95$ and black body radiation coefficient, $C_0 = 5.67 \mathrm{Wm}^2 \mathrm{K}^{-1}$). (4 marks)
 - iii) Calculate the net radioactive heat transfer rate of 1m² surface area between two parallel surfaces. The furnace wall is covered by a corroded steel sheet with the emissivity $\varepsilon = 0.8$ and the temperature $t_1 = 650^{\circ}$ C. The second wall is made of bricks, its surface has the emissivity $\varepsilon = 0.95$ and its temperature $t_2 = 50^{\circ}$ C. (4 marks)

Question Three (20 marks)

- a) Given the ideal gas equation PV = nRT where all the symbols have their usual meaning: Derive the expression for work done on the gas and hence Calculate the work done for $2 \ moles$ if an ideal gas were kept constant temperature $0^{\circ}C$ if the gas was compressed from a volume of 4L to 1L. (8 marks)
- b) 1 litre of a gas is at a pressure of 3 atm and temperature of 27°C. It expands at constant pressure until its volume is 3 litres, after which it's cooled at constant volume until its pressure is 1 atm. It's the compressed at constant pressure until its volume is again 1 litre and then it's heated at constant volume until it comes back to its original state. Draw a PV-diagram for the process and hence calculate the total work done by the gas and total heat energy added to the gas system. (12 marks)

Question Four (20 marks)

- a) A simple heat engine contains an ideal monoatomic gas confined to a cylinder by a movable piston. The gas in the piston at $T = 3 \times 10^2$ K and V= 5 litres, first undergoes an isochoric process and its pressure changes from 1 atm to 3 atm. Then it passes through an isothermal expansion process where its volume changes from 5 litres to 15 litres after which it goes back to its original state by passing through an isobaric compression process. Find the number of moles of a gas and temperature at stage II of the gas. (4 marks)
- b) Find the change in thermal energy (ΔU) thermal energy added (Q) and work done (W) between stage I and II. (4 marks)
- c) Repeat (b) above between stage II and III. (4 marks)
- d) Repeat (b) above between stage III and I. (2 marks)
- e) Find the net change in internal energy. (2 marks)
- f) Find the thermal energy (Qh) transferred to the system and thermal energy rejected (Qc) and hence find the efficiency of the heat engine. (4 marks)

Question Five (20 marks)

- a) Define a thermodynamic process. (1mark)
- b) Convert 300K, 56°R and 158°F into °C. (6 marks)
- c) Determine values of oxygen state variables at temperature 20° C and pressure 0.10132 MPa if the molar mass for oxygen (O₂) is 31.999 kg(kmol)⁻¹ and R_m = 8314.51J(kmol⁻¹)K⁻¹. (8 marks)
- d) Determine the amount of heat required to for the temperature change from 20°C to 180° C of 5kg of Oxygen at standard pressure 0.10132MPa given that $a_1 = 27.1769$, $a_2 = 51.995 \times 10^{-4}$, $a_3 = -11.5873 \times 10^{-7}$ and $a_4 = 11.9421 \times 10^{-11}$. (5 marks)