

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR

END OF SEMESTER EXAMINATIONS

THIRD YEAR FIRST SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE

MATHEMATICS

COURSE CODE: MAA 314

COURSE TITLE:

METHODS I

DATE: 21/7/2021

TIME: 9 AM - 11 AM

INSTRUCTIONS

Answer Questions ONE and Any other TWO

TIME: 2 HOURS

QUESTION ONE [30MKS]

- a. Use special function to evaluate $\int_{0}^{1} x^{5} (1-x)^{6} dx$ 4mks
- b. Suppose f(t) = 0 for t < 0 and that a > 0, show that $L\{f(t-a)\} = e^{as}F(s)$ (4mks)
- c. Prove that $J_0(x) = -J_1(x)$ 5mks
- d. Using Rodrigues's formula derive the first four terms (5mks)
- e. State whether the following functions are even or odd (3mks)

i.
$$f(x) = \sin x; \quad \frac{-\pi}{2} < x < \frac{\pi}{2}$$

ii.
$$f(x) = \cos x; \quad \frac{-\pi}{2} < x < \frac{\pi}{2}$$

- f. Evaluate $\int_0^\infty x^3 e^{-4x} dx$ using special functions (4mks)
- g. Evaluate the Bessel function $J_0(x)$ and $J_1(x)$ when x=1, correct to 3 decimal places (5mks)

QUESTION TWO [20MKS]

- a. Let f(x) be a 2π -periodic function such that $f(x) = x^2$ for $x \in [-\pi, \pi]$. Find the Fourier series for the parabolic wave. (8mks)
- b. Show that $L\{\cos at\} = \frac{s}{s^2 + a^2}$ (5mks)
- c. Solve the initial value problem $y'-5y=-e^{-2t}$, y(0)=3 (7mks)

QUESTION THREE [20MKS]

- a. Prove that $\Gamma(1) = \Gamma(2)$ (3mks)
- b. Prove that $B(m,n) = 2 \int_{0}^{\pi/2} \sin^{2m-1}\theta \cos^{2n-1}\theta \, d\theta \, (3\text{mks})$
- c. Express the polynomial $7x^4 3x + 1$ in terms of Legendre series (6mks)
- d. Solve the following differential equation by the method of power series

$$y'' - 2xy' + y = 0$$
 (8mks)

QUESTION FOUR [20MKS]

a. Give the definition of an ordinary point and state whether the following equations have an ordinary or singular point (3mks)

$$x^2y''+(x^2+x)y'-y=0$$

$$x^2y''+(1+2x)y'=0$$

- b. Solve $x^2y'' + 5xy' + (3-x)y = 0$ using the method of Frobenius. (12mks)
- c. evaluate $\int_{0}^{\infty} x^{6} e^{-2x} dx$ (5mks)

QUESTION FIVE [20MKS]

a. classify the following equation (3mks)

i.
$$2U_{xx} - 4U_{xy} + 2U_{yy} = 0$$

ii.
$$9U_{xx} + 20U_{xy} + 5U_{yy} = 0$$

- b. Using direct integration to solve the equation $\frac{\partial^2 U}{\partial x^2} = \sin(x+y)$ given that at y=0, $\frac{\partial U}{\partial x} = 1$ and at x=0, $U=(y-1)^2$ (7mks)
- c. Use the method of separation of variables to solve $U_x 2U_t = U$ hence show that $U(x, 0) = 6e^{-3t}$ (10mks)