



## **KIBABII UNIVERSITY**

### UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR

# THIRD YEAR FIRST SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE

COURSE CODE:

SCH 311

COURSE TITLE: COMPARATIVE STUDY OF S AND P BLOCK

**ELEMENTS** 

**DURATION: 2 HOURS** 

DATE: 13/07/2021

TIME: 2:00-4:00PM

#### INSTRUCTIONS TO CANDIDATES

- Answer **QUESTION ONE** (Compulsory) and any other two (2) Questions.
- Indicate **answered questions** on the front cover.
- Start every question on a new page and make sure question's number is written on each page.

This paper consists of 3 printed pages. Please Turn Over



KIBU observes ZERO tolerance to examination cheating

### Question 1

|                   | State four demerits of Mendeleev's Periodic Table.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [4mks]                          |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| b)                | Write electron arrangement of the following;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |
|                   | Potassium (19), Phosphorus (15), Gallium (31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [3mks]                          |
| c)                | Explain;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |
|                   | i. What is meant by the term 'diagonal relationship'.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [1mk]                           |
| i                 | i. Why a pair of elements may exhibit diagonal relationship in the periodic table.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [3mks]                          |
| d)                | Why does Li show anomalous behavior                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | [2mks]                          |
| e)                | Mention four Points of Difference between 'Lithium and other Alkali Metals'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | [4mks]                          |
| f)                | Explain why;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                 |
| i                 | i. Sodium melts at only 97.8°C and magnesium melts at 650°C and yet both are metals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | [2mks]                          |
| i                 | i. Size of potassium ion, $K^+$ (0.13nm) is smaller than that of potassium atom (0.23 nm).                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [2mks]                          |
| h) '              | What are the oxidation states of S in the following compounds:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [3mks]                          |
|                   | (i) $SO_2$ (ii) $SF_6$ (iii) $Na_2S_2O_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |
| i)                | Show that B <sub>2</sub> O <sub>3</sub> is amphoteric oxide.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [2mks]                          |
| j)                | Discuss the various reactions that occur in solvay process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [4mks]                          |
| Qu                | nestion 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |
| 0)                | 777 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                 |
| a)                | What do you understand by the following terms? [31]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mks]                            |
|                   | i. inert pair effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mks]                            |
|                   | i. inert pair effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mks]                            |
| j                 | <ul><li>i. inert pair effect</li><li>i. allotropy</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mks]                            |
| ii<br>iii         | <ul><li>i. inert pair effect</li><li>i. allotropy</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mks] [3mks]                     |
| ii<br>iii         | <ul><li>i. inert pair effect</li><li>i. allotropy</li><li>i. catenation</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 140 1                           |
| ii<br>iii<br>b)   | <ul> <li>i. inert pair effect</li> <li>i. allotropy</li> <li>i. catenation</li> <li>Explain why the boiling point of the hydrides of group (IV) is in order:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                               | [3mks]                          |
| ii<br>iii<br>b)   | <ul> <li>i. inert pair effect</li> <li>i. allotropy</li> <li>i. catenation</li> <li>Explain why the boiling point of the hydrides of group (IV) is in order:</li> <li>CH<sub>4</sub> &lt; SiH<sub>4</sub> &lt; GeH<sub>4</sub> &lt; SnH<sub>4</sub></li> </ul>                                                                                                                                                                                                                                                                                                        | [3mks]                          |
| ii<br>iii<br>b)   | <ul> <li>i. inert pair effect</li> <li>i. allotropy</li> <li>i. catenation</li> <li>Explain why the boiling point of the hydrides of group (IV) is in order:         CH<sub>4</sub> &lt; SiH<sub>4</sub> &lt; GeH<sub>4</sub> &lt; SnH<sub>4</sub> </li> <li>By Sketching the structures of the two allotropes of carbon, diamond and graphite</li> </ul>                                                                                                                                                                                                             | [3mks]<br>e, explair            |
| i ii iii b) c) d) | <ul> <li>i. inert pair effect</li> <li>ii. allotropy</li> <li>i. catenation</li> <li>Explain why the boiling point of the hydrides of group (IV) is in order:         CH<sub>4</sub> &lt; SiH<sub>4</sub> &lt; GeH<sub>4</sub> &lt; SnH<sub>4</sub> </li> <li>By Sketching the structures of the two allotropes of carbon, diamond and graphite the difference in their properties.</li> </ul>                                                                                                                                                                        | [3mks]<br>e, explair<br>[8mks]  |
| ii iii b) c) d)   | i. inert pair effect i. allotropy i. catenation  Explain why the boiling point of the hydrides of group (IV) is in order:  CH <sub>4</sub> < SiH <sub>4</sub> < GeH <sub>4</sub> < SnH <sub>4</sub> By Sketching the structures of the two allotropes of carbon, diamond and graphite the difference in their properties.  Discuss the various reactions that occur in solvay process  lestion 3                                                                                                                                                                      | [3mks]<br>e, explair<br>[8mks]  |
| i ii iii b) c) d) | <ul> <li>i. inert pair effect</li> <li>i. allotropy</li> <li>i. catenation</li> <li>Explain why the boiling point of the hydrides of group (IV) is in order:  CH<sub>4</sub> &lt; SiH<sub>4</sub> &lt; GeH<sub>4</sub> &lt; SnH<sub>4</sub></li> <li>By Sketching the structures of the two allotropes of carbon, diamond and graphite the difference in their properties.</li> <li>Discuss the various reactions that occur in solvay process</li> <li>nestion 3</li> <li>Draw the structures of the following;</li> </ul>                                           | [3mks] e, explair [8mks] [6mks] |
| ii iii b) c) d)   | <ul> <li>i. inert pair effect</li> <li>i. allotropy</li> <li>i. catenation</li> <li>Explain why the boiling point of the hydrides of group (IV) is in order:  CH<sub>4</sub> &lt; SiH<sub>4</sub> &lt; GeH<sub>4</sub> &lt; SnH<sub>4</sub></li> <li>By Sketching the structures of the two allotropes of carbon, diamond and graphite the difference in their properties.</li> <li>Discuss the various reactions that occur in solvay process</li> <li>nestion 3</li> <li>Draw the structures of the following;</li> <li>(i) Be<sub>2</sub>Cl<sub>4</sub></li> </ul> | [3mks] e, explair [8mks] [6mks] |
| ii iii b) c) d)   | <ul> <li>i. inert pair effect</li> <li>i. allotropy</li> <li>i. catenation</li> <li>Explain why the boiling point of the hydrides of group (IV) is in order:  CH<sub>4</sub> &lt; SiH<sub>4</sub> &lt; GeH<sub>4</sub> &lt; SnH<sub>4</sub></li> <li>By Sketching the structures of the two allotropes of carbon, diamond and graphite the difference in their properties.</li> <li>Discuss the various reactions that occur in solvay process</li> <li>nestion 3</li> <li>Draw the structures of the following;</li> </ul>                                           | [3mks] e, explair [8mks] [6mks] |

c) Explain the following;

[4mks]

- i. Aluminium vessels should not be cleaned with a cleansing agent containing washing soda.
- ii. Concentrated HNO3 turns yellow in sun light.
- d) Describe briefly how cement is manufactured and explain the main chemical changes involved.
   [10 mks]

#### Question 4

a) Distinguish between Ionization energy and Electron affinity

[2mks]

- Explain how Atomic radius and Ionization energy vary across the period and down the group.
   [12 mks]
- c) First ionization energy of aluminium is lower than that of Magnesium. Explain.

[2mks]

d) Briefly explain the importance of ionization potential in determining the chemistry of an element.
 [4mks]

#### **Question 5**

a) Fluorine shows some properties which are not typical of the rest of the group 17 members. State three of these properties.

[3mks]

- b) State and explain;
  - i) The trend in boiling points of the halogens down the group.

[2mks]

ii) The trend in the acidity of the hydrides of group 17 elements.

[2mks]

- c)The best known psuedohalide ion is CN<sup>-</sup>. Give five ways in which CN<sup>-</sup> resembles halide ions (Cl<sup>-</sup>, Br<sup>-</sup> and I<sup>-</sup> ions).
- d) Account for the following:

[4mks]

- i. Noble gases have maximum ionization energy in their period.
- ii. The b.p. of noble gases increases with the increase in atomic Number.
- iii. helium molecule, (He2) is not formed
- iv. Xenon has a closed shell configuration but forms compounds with fluorine. Explain.
- e) Complete and balance the following reactions:

i.  $XeF_2(s) + H_2O(l) \rightarrow$ 

[2mks]

ii. XeF<sub>6</sub> +Si O<sub>2</sub> little water

[2Mks]