KIBABII UNIVERSITY ### UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR # THIRD YEAR FIRST SEMESTER MAIN EXAMINATIONS FOR THE DEGREE OF BACHELOR OF EDUCATION SCIENCE COURSE CODE: SCH 311 COURSE TITLE: COMPARATIVE STUDY OF S AND P BLOCK **ELEMENTS** **DURATION: 2 HOURS** DATE: 13/07/2021 TIME: 2:00-4:00PM #### INSTRUCTIONS TO CANDIDATES - Answer **QUESTION ONE** (Compulsory) and any other two (2) Questions. - Indicate **answered questions** on the front cover. - Start every question on a new page and make sure question's number is written on each page. This paper consists of 3 printed pages. Please Turn Over KIBU observes ZERO tolerance to examination cheating ### Question 1 | | State four demerits of Mendeleev's Periodic Table. | [4mks] | |-------------------|---|---------------------------------| | b) | Write electron arrangement of the following; | | | | Potassium (19), Phosphorus (15), Gallium (31) | [3mks] | | c) | Explain; | | | | i. What is meant by the term 'diagonal relationship'. | [1mk] | | i | i. Why a pair of elements may exhibit diagonal relationship in the periodic table. | [3mks] | | d) | Why does Li show anomalous behavior | [2mks] | | e) | Mention four Points of Difference between 'Lithium and other Alkali Metals' | [4mks] | | f) | Explain why; | | | i | i. Sodium melts at only 97.8°C and magnesium melts at 650°C and yet both are metals. | [2mks] | | i | i. Size of potassium ion, K^+ (0.13nm) is smaller than that of potassium atom (0.23 nm). | [2mks] | | h) ' | What are the oxidation states of S in the following compounds: | [3mks] | | | (i) SO_2 (ii) SF_6 (iii) $Na_2S_2O_3$ | | | i) | Show that B ₂ O ₃ is amphoteric oxide. | [2mks] | | j) | Discuss the various reactions that occur in solvay process | [4mks] | | Qu | nestion 2 | | | 0) | 777 - 1 | | | a) | What do you understand by the following terms? [31] | mks] | | | i. inert pair effect | mks] | | | i. inert pair effect | mks] | | j | i. inert pair effecti. allotropy | mks] | | ii
iii | i. inert pair effecti. allotropy | mks] [3mks] | | ii
iii | i. inert pair effecti. allotropyi. catenation | 140 1 | | ii
iii
b) | i. inert pair effect i. allotropy i. catenation Explain why the boiling point of the hydrides of group (IV) is in order: | [3mks] | | ii
iii
b) | i. inert pair effect i. allotropy i. catenation Explain why the boiling point of the hydrides of group (IV) is in order: CH₄ < SiH₄ < GeH₄ < SnH₄ | [3mks] | | ii
iii
b) | i. inert pair effect i. allotropy i. catenation Explain why the boiling point of the hydrides of group (IV) is in order: CH₄ < SiH₄ < GeH₄ < SnH₄ By Sketching the structures of the two allotropes of carbon, diamond and graphite | [3mks]
e, explair | | i ii iii b) c) d) | i. inert pair effect ii. allotropy i. catenation Explain why the boiling point of the hydrides of group (IV) is in order: CH₄ < SiH₄ < GeH₄ < SnH₄ By Sketching the structures of the two allotropes of carbon, diamond and graphite the difference in their properties. | [3mks]
e, explair
[8mks] | | ii iii b) c) d) | i. inert pair effect i. allotropy i. catenation Explain why the boiling point of the hydrides of group (IV) is in order: CH ₄ < SiH ₄ < GeH ₄ < SnH ₄ By Sketching the structures of the two allotropes of carbon, diamond and graphite the difference in their properties. Discuss the various reactions that occur in solvay process lestion 3 | [3mks]
e, explair
[8mks] | | i ii iii b) c) d) | i. inert pair effect i. allotropy i. catenation Explain why the boiling point of the hydrides of group (IV) is in order: CH₄ < SiH₄ < GeH₄ < SnH₄ By Sketching the structures of the two allotropes of carbon, diamond and graphite the difference in their properties. Discuss the various reactions that occur in solvay process nestion 3 Draw the structures of the following; | [3mks] e, explair [8mks] [6mks] | | ii iii b) c) d) | i. inert pair effect i. allotropy i. catenation Explain why the boiling point of the hydrides of group (IV) is in order: CH₄ < SiH₄ < GeH₄ < SnH₄ By Sketching the structures of the two allotropes of carbon, diamond and graphite the difference in their properties. Discuss the various reactions that occur in solvay process nestion 3 Draw the structures of the following; (i) Be₂Cl₄ | [3mks] e, explair [8mks] [6mks] | | ii iii b) c) d) | i. inert pair effect i. allotropy i. catenation Explain why the boiling point of the hydrides of group (IV) is in order: CH₄ < SiH₄ < GeH₄ < SnH₄ By Sketching the structures of the two allotropes of carbon, diamond and graphite the difference in their properties. Discuss the various reactions that occur in solvay process nestion 3 Draw the structures of the following; | [3mks] e, explair [8mks] [6mks] | c) Explain the following; [4mks] - i. Aluminium vessels should not be cleaned with a cleansing agent containing washing soda. - ii. Concentrated HNO3 turns yellow in sun light. - d) Describe briefly how cement is manufactured and explain the main chemical changes involved. [10 mks] #### Question 4 a) Distinguish between Ionization energy and Electron affinity [2mks] - Explain how Atomic radius and Ionization energy vary across the period and down the group. [12 mks] - c) First ionization energy of aluminium is lower than that of Magnesium. Explain. [2mks] d) Briefly explain the importance of ionization potential in determining the chemistry of an element. [4mks] #### **Question 5** a) Fluorine shows some properties which are not typical of the rest of the group 17 members. State three of these properties. [3mks] - b) State and explain; - i) The trend in boiling points of the halogens down the group. [2mks] ii) The trend in the acidity of the hydrides of group 17 elements. [2mks] - c)The best known psuedohalide ion is CN⁻. Give five ways in which CN⁻ resembles halide ions (Cl⁻, Br⁻ and I⁻ ions). - d) Account for the following: [4mks] - i. Noble gases have maximum ionization energy in their period. - ii. The b.p. of noble gases increases with the increase in atomic Number. - iii. helium molecule, (He2) is not formed - iv. Xenon has a closed shell configuration but forms compounds with fluorine. Explain. - e) Complete and balance the following reactions: i. $XeF_2(s) + H_2O(l) \rightarrow$ [2mks] ii. XeF₆ +Si O₂ little water [2Mks]