

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2020/2021 ACADEMIC YEAR

THIRD YEAR FIRST SEMESTER

MAIN EXAMINATION

FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE:

MAP 312

COURSE TITLE:

LINEAR ALGEBRA III

DATE:

22/7/2021

TIME: 9 AM - 11 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 3 Printed Pages. Please Turn Over

QUESTION ONE (30 MARKS)

- a) Define the following:
 - Bilinear form over F. (i)

(2 marks)

(ii) B-Orthogonal compliment. (2 marks) (3 marks)

(iii) A quadratic function on V.

(4 marks)

An isometry. (iv)

(v) Tensor product.

- (2 marks)
- b) Show that matrix $A = \begin{bmatrix} 5 & -3 & 2 \\ 15 & -9 & 6 \\ 10 & -6 & 4 \end{bmatrix}$ is a nilpotent matrix of index 2. (4 marks)
- c) Outline any five applications of finite vector spaces.

(5 marks)

- d) Given that v = (1 + 2i, 3-i) and u = (-2 + i, 4) are vectors in the complex vector space C^2 , (4 marks) determine the vector 3v-(5-i) u.
- e) Calculate the conjugate transpose of matrix A.

$$A = \begin{bmatrix} 1 & -2 - i & 5 \\ 1 + i & i & 4 - 2i \end{bmatrix}$$
 (4 marks)

QUESTION TWO (20 MARKS)

- a) Define the following:
 - Eigenvalue and eigenvector. (i)

(3 marks)

Determinant of a matrix. (ii)

(2 marks)

Trace of a matrix. (iii)

(2 marks)

- b) Given the following 2×2 matrix $A = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$,
 - Find its eigen equation.

(10 marks)

c) Given that A is a real matrix with a complex eigenvalue $\lambda = \mu + i\nu$ and corresponding eigenvector v = x + iy, find the complex conjugate λ and the complex conjugate (3 marks) eigenvector.

QUESTION THREE (20 MARKS)

- a) Show that if matrix A is Hermitian, then all the eigenvalues of A are real. (10 marks)
- b) Show that if matrix A is Hermitian, then any two eigenvectors from different eigenspaces are orthogonal in the standard inner product for \mathbb{C}^n , (\mathbb{R}^n , If A is real symmetric).

(10 marks)

QUESTION FOUR (20 MARKS)

a) Define the terms:

Hermitian matrix. (2 marks) (i) Symmetric matrix. (2 marks) (ii)

(2 marks) Nilpotent matrix.

b) Show if the matrix $A = \begin{bmatrix} 2 & -1 \\ 1 & -2 \end{bmatrix}$ of index 2 is nilpotent or not. (4 marks)

c) Show that $S = \{(i, 0, 0), (i, i, 0), (0, 0, i)\}$

where $v_{1} = (i, 0, 0)$

 $v_{2}=(i, i, 0)$

 $v_{3}=(0, 0, i)$

is a basis for C^3 . (10 marks)

QUESTION FIVE (20 MARKS)

a) Define the terms:

Jordan block. (2 marks) (i)

Jordan form. (2 marks) (ii) Jordan chain. (2 marks)

b) Determine the Jordan form of the operator represented by the matrix

 $A = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 4 & -1 \\ 4 & 12 & 2 \end{pmatrix}$ (7 marks)

c) Show that if (V, q) is a quadratic form over $F = F_2$ and that dim $V \ge 4$, there exists a

Vector $v \in V$ with q(v) = 0. (7 marks)