

(Knowledge for Development)

KIBABII UNIVERSITY UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR FOURTH YEAR FIRST SEMESTER MAIN EXAMINATION FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE: MAT 407

COURSE TITLE: FUNCTIONAL ANALYSI

DATE: 12/7/2021 **TIME**: 9 AM - 11 AM

INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS, 2020/2021 ACADEMIC YEAR MAIN EXAMINATION, FOR THE DEGREE OF BACHELOR OF SCIENCE JULY 2021 COURSE CODE: MAT 407 COURSE TITLE: FUNCTIONAL ANALYSIS

INSTRUCTIONS

Answer QUESTION ONE and any other TWO questions.

QUESTION ONE (30marks)

a) Define the following terms

a), a time the tene in ing terms	
i). Relatively closed set	(2 Marks)

- b). Let V be an inner product space. Prove that $|\langle x, y \rangle| \le ||x|| ||y||$ for all $x, y \in V$. (6 Marks)
- c). Suppose that X and Y are metric spaces where X is compact and $f: X \to Y$ is continuous. Show that f(X) is bounded. (5 Marks)
- d). Prove that the norm $||x|| = \max\{|x_i|: i = 1, ..., n\}$ is positively homogeneous. (2 Marks)
- e). Prove that the set of piecewise linear functions on [0,1] is dense in the set of continuous functions on a closed interval with respect to the supremum norm, $(\mathcal{C}[0,1], \|\cdot\|_{\infty})$. (7 Marks)

QUESTION TWO (20marks)

a). Define a compact set hence show that
$$\mathbb{R}$$
 is not compact. (3 Marks)

b). Prove that the set
$$\left\{\frac{1}{n}: n \in \mathbb{N}\right\} \cup \{0\}$$
 is sequentially compact. (4 Marks)

- c). Let (X, d) be a complete metric space and U_n an open dense subsets of X for $n \in \mathbb{N}$. Prove that $\bigcap_n U_n$ is dense in X. (8 Marks)
- d). Define a totally bounded set hence prove that A = (-1,1) is totally bounded. (5 Marks)

QUESTION THREE (20marks)

Consider the function $f(x) = x^2$ defined on [0, a] where $a \in \mathbb{R}$.

- a). Find the range of f(x). Is it open or closed, explain? (4 Marks)
- b). State and prove the Heine Borel theorem for \mathbb{R} . (14 Marks)
- c). Use the theorem above to determine if the range of f(x) is compact or not. (2 Marks)

QUESTION FOUR (20marks)

- a).(i). Define a nowhere dense set (2 Marks)
 - (ii). Hence prove that \mathbb{Z} is nowhere dense in \mathbb{R} while \mathbb{Q} is dense in \mathbb{R} . (6 Marks)
- b). Prove that the intersection of compact sets is compact (5 Marks)
- c). Let B(X) be the set of bounded functions on a set X. Prove that the space $(B(X), \|\cdot\|_{\infty})$ is complete. (7 Marks)

QUESTION FIVE (20marks)

- a). Prove that any continuous function from a compact metric space to any other metric space is uniformly continuous. (7 Marks)
- b). (i). When do we say a collection of sets have a finite intersection property. (2 Marks)
- (ii). Suppose X is a metric space and \mathcal{C} is a non-empty collection of compact subsets of X. If \mathcal{C} has finite intersection property, then $\bigcap \mathcal{C} \neq \phi$. (3 Marks)
- c). State and prove the Nested interval theorem. (8 Marks)