

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR

THIRD YEAR FIRST SEMESTER
MAIN EXAMINATIONS

FOR THE DEGREE OF BSC (PHYSICS)

COURSE CODE:

SPC 311

COURSE TITLE:

SOLID STATE PHYSICS I

DURATION: 2 HOURS

DATE: 13/07/2021

TIME: 2:00-4:00PM

INSTRUCTIONS TO CANDIDATES

Answer **QUESTION ONE** (Compulsory) and any other two (2) Questions.

Indicate **answered questions** on the drawing paper.

Answer each question on a separate drawing paper.

This paper consists of 3 printed pages. Please Turn Over

KIBU observes ZERO tolerance to examination cheating

QUES	STION ONE (30 MARKS)	
a)	State two methods of determining crystal structure	(2mks)
b)	Explain two applications of X-ray diffraction	(3mks)
c)	Differentiate between intrinsic semi-conductors and metals	(2mks)
d)	Explain the free electron model of metallic Solids	(2mks)
e)	Explain five importance of miller Indices	(5mks)
f)	State Wiedemann franz law	(2mks)
g)	Explain five general characteristics of metals	(5mks)
h)	Discuss five effects of impurities in the structure and properties of solids	(4mks)
i)	Differentiate between interplanar distance and atomic radius	(2mks)
j)	State three classes of solids	(3mks)
	QUESTION TWO (20 MARKS)	
a)	Determine the inter atomic spacing when the glancing angle of 30 _o is observed du	aring
	first order reflection in a crystal plane. Miller Indices as (111) given that the way	elength
	of X-ray is $2.0 \times 10_{-10} \text{M}$	(6mks)
b)	In a single cubic Crystal. Find the ration of the intercept on the three axes by (1,2	2,3) plane
		(5mks)
c)	What is miller indices and outline steps involved in determining miller indices o	f a plane
		(9mks)
	QUESTION THREE (20 MARKS)	
a)	Discuss four types of crystal defect	(8mks)
b)	Discuss three types of primary bonds found in different materials	(6mks)
c)	Discuss four ways in which impurities affects structure and properties of solids	(6mks)
	QUESTION FOUR (20MARKS)	
a)	Determine interatomic spacing when the glancing angle of 30° is observed forming f	irst
	order reflection in a crystal lens Miller index as (111) given that the crystal length is	
	$2.0 \times 10_{-10} \mathrm{m}$	(5mks)
b)	Discuss five mechanical properties of solids	(10mks
c)	Discuss five importance of miller indices	(5mks)
	QUESTION FIVE (20MKS)	
a)	Show that atomic packing factor of HCP crystals is 0.74	(9mks)
b)	Magnesium has HCP structure, the radius of Magnesium atom is 0.1605nm. Calculate the	
	volume change of unit cell of magnesium	(6mks)

c) Explain four behavior of a crystal that influences and determination of crystal plane

(5mks)