

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS **2020/2021 ACADEMIC YEAR**

FIRST YEAR SECOND SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF B.SC (SCIENCE)

COURSE CODE:

SPC 121

COURSE TITLE:

ELECTRICITY AND MAGNETISM 1

DATE: 12 07 12021

TIME: 2:00-4:00PM

INSTRUCTIONS TO CANDIDATES

TIME: 2 Hours

Answer question ONE and any TWO of the remaining

QUESTION ONE (30 marks) compulsory

(a)	Define the term electric current	(1mk)
(b)	A particle of mass 5 x 10 ⁻⁶ g is kept over a large horizontal sheet of charge de	ensity 4 0
	x 10 ⁻⁶ Cm ⁻² . What charge should be given to this particle so that if released.	it does not
	fall down? How many electrons are to be removed to give this charge? How	much
	mass is decreased due to the removal of these electrons?	(9mks)
(c)	Derive Gauss law from Coulomb's law	(6mks)
(d)	Given $C = 1 \text{pF}$, $A = 50 \text{cm}^{-2}$ and $k = 2$, find d in mm (symbols carry the usual meaning)	
7.5		(4mks)
(e)	Outline two uses of each of the following materials:	
	(i) Ferrimagnetic materials	(2mks)
	(ii) Antiferromagnetic materials	(2mks)
	(iii) Diamagnetic materials	(2mks)
(f)	Define the term electrostatic potential and state its integral equation	(2mks)
(g)	State any two factors that determines the resistance of a metallic conductor	(2mks)

QUESTION TWO (20 marks)

- (a) A charge of 4 x 10⁻⁸ is distributed uniformly on the surface of a sphere of radius 1cm. it is covered by a concentric hollow conducting sphere of radius 5cm.
 (i) Find the electric field at a point 2cm away from the centre
 (ii) A charge of 6 x 10⁻⁸ C is placed on the hollow sphere. Find the surface charge
 - (ii) A charge of 6 x 10⁻⁸ C is placed on the hollow sphere. Find the surface charge density on the outer surface of the hollow sphere. (4mks)
- (b) Consider a thin spherical shell of surface charge density, σ, and radius, R. assuming that the shell is symmetrical, determine the electric field:
 (i) Outside the spherical shell

(ii) Inside the spherical shell (7mks)
(iii) Inside the spherical shell (3mks)

QUESTION THREE (20 marks)

- (a) State any two factors that determine the capacitance of parallel-plate capacitor (2mks)
- (b) Show that the capacitance is given by, $C = \frac{Ak\varepsilon}{d}$ where k is the dielectric constant, A is area of overlap and d is the distance of separation of the plates (8mks)
- (a) Proof that the effective capacitance for three capacitors in parallel arrangement is given by: $C_T = C_1 + C_2 + C_3$, where C_T is the effective/total capacitance and C_1 , C_2 and C_3 are individual capacitances of capacitors in parallel network. (4mks)
- (b) The figure below shows part of a circuit containing three capacitors.

- (i) Calculate the effective capacitance between A and B.
- (3 marks)
- (ii) Given that the potential difference (p.d.) across AB is 10V, what is the total charge flowing through the circuit? (3mks)

QUESTION FOUR (20 marks)

Discuss magnetic materials and their uses

(20mks)