

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS 2020/2021 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER MAIN EXAMINATIONS

FOR THE DEGREE OF BSC CHEMISTRY

COURSE CODE: SCH 123

COURSE TITLE: LABORATORY TECHNIQUES II

DATE: 13/07/2021 TIME: 9:00-11:00AM

INSTRUCTIONS TO CANDIDATES:

- Answer Question ONE (Compulsory) and any other TWO (2) questions
- Indicate answered questions on the front cover
- Start each question on a new page and make sure the question's number is written on each page

TIME: 2 Hours

This paper consists of 4 printed pages. Please Turn Over

KIBU observes ZERO tolerance to examination cheating

Question 1 [30 Marks]

Section I

i. Which of the following illustrate the correct way to pick up a heated test tube [1 Mark]

- ii. Approved eye protection devices, such as goggles, are worn in the laboratory [1 Mark]
 - A. to avoid eye strain
 - B. any time chemicals, heat, or glassware are used
 - C. to improve your vision
 - D. only if you do not have glasses
- iii. Which of the following experiments is
 - a) precise but not accurate?

[1 Mark]

b) neither accurate nor precise?

[1 Mark]

iv. A student is carrying out an experiment and needs to incubate a bacterial culture at 45 °C. Estimate the difference in temperature between the current reading and the desired temperature. [1 Mark]

- A. 8
- B. 7
- C. 9
- D. 12

v. Which of the following represents the products for the reaction below? [2 Marks]

- $Na_2SO_4 + 2AgNO_3 \longrightarrow$
- A. $Ag_2SO_4 + Na_2NO_3$ B. $AgSO_4 + NaNO_3$
- C. $Ag_2SO_4 + 2NaNO_3$
- D. $Ag_2SO_4 + NaNO_3$

vi. In a gravimetric analysis, the barium sulfate precipitate was weighed before it completely dried, indicate the likely impact of this on the experimental result. [2 Marks]

vii. Estimate the difference in length in mm between leaves A and B [2 Marks]

viii. The diagram below illustrates a student carrying out an experiment in the laboratory. Highlight two unsafe laboratory practises and the correct practise the student should have adhered to

[4 Marks]

- ix. List any 4 pieces of safety equipment located in the chemistry laboratory [4 Marks]
- x. A student determines measures the mass of one mole of carbon and finds it to be 12.22 grams. If the accepted value is 12.11 grams, what is the students % of error. [3 Marks]

xi. Differentiate between direct and indirect titration methods

[4 Marks]

Question 2 [20 Marks]

- While driving from Lokichogio to Mombasa (approx. 808 miles), a 2012 Toyota Prado uses
 52.8 gallons of Diesel. Calculate
 - a. the average fuel economy in km per Litre for the Prado

[10 Marks]

b. the fuel costs for the trip if Diesel costs 107.66 per Litre

[4 Marks]

ii. An irregular shaped material weighing 51.84 g is submerged in graduated cylinder containing water as shown below

a. Determine the density of the material

[3 Marks]

b. Determine the identity of the material. Explain your answer

[3 Marks]

Question 3 [20 Marks]

i. List and explain the different categories of titration reactions

[8 Marks]

ii. Sketch the titration curves of each of the following and give examples

[12 Marks]

- a. A strong acid with a strong base
- b. A weak acid with a strong base

c. A polyprotic acid with a strong base

Question 4 [20 Marks]

Describe the absorbance characteristics of the titrant, analyte and product in the titrations represented by the following graphs.

Question 5 [20 Marks]

i. Discuss three factors that may affect accuracy of weighing on an analytical balance

[9 Marks]

ii. Describe the proper procedure for operating an analytical balance

[11 Marks]

Millimeters	Centimeters	Meters	Kilometers	Inches	Feet	Yards	Miles
mm	cm	m	km	in	ft	vd	mi
1	0.1	0.001	0.000001	0.03937	0.003281	0.001094	6.21e-07
10	1	0.01	0.00001	0.393701	0.032808	0.010936	0.000006
1000	100	1	0.001	39.37008	3.28084	1.093613	0.000621
1000000	100000	1000	1	39370.08	3280.84	1093.613	0.621371
25.4	2.54	0.0254	0.000025	1	0.083333	0.027778	0.000016
304.8	30.48	0.3048	0.000305	12	1	0.333333	0.000189
914.4	91.44	0.9144	0.000914	36	3	1	0.000568
1609344	160934.4	1609.344	1.609344	63360	5280	1760	1

Centimeter cube	Meter cube	Liter	Inch cube	Foot cube	US gallons	Imperial gallons	US barrel (oil)
cm ³	m ³	ltr	in ³	ft ³	US gal	Imp. gal	US brl
1	0.000001	0.001	0.061024	0.000035	0.000264	0.00022	0.000006
1000000	1	1000	61024	35	264	220	6.29
1000	0.001	1	61	0.035	0.264201	0.22	0.00629
16.4	0.000016	0.016387	1	0.000579	0.004329	0.003605	0.000103
28317	0.028317	28.31685	1728	1	7.481333	6.229712	0.178127
3785	0.003785	3.79	231	0.13	1	0.832701	0.02381
4545	0.004545	4.55	277	0.16	1.20	1	0.028593
158970	0.15897	159	9701	6	42	35	1

Densities of common substances

Solids	Liquids	Gases (at 25 °C and 1 atm)	
ice (at 0 °C) 0.92 g/cm ³	water 1.0 g/cm ³	dry air 1.20 g/L	
oak (wood) 0.60-0.90 g/cm ³	ethanol 0.79 g/cm ³	oxygen 1.31 g/L	
iron 7.9 g/cm ³	acetone 0.79 g/cm ³	nitrogen 1.14 g/L	
copper 9.0 g/cm ³	glycerin 1.26 g/cm ³	carbon dioxide 1.80 g/L	
lead 11.3 g/cm ³	olive oil 0.92 g/cm ³	helium 0.16 g/L	
silver 10.5 g/cm ³	gasoline 0.70–0.77 g/cm ³	neon 0.83 g/L	
gold 19.3 g/cm ³	mercury 13.6 g/cm ³	radon 9.1 g/L	