

(Knowledge for Development)

KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS

2020/2021 ACADEMIC YEAR

FIRST YEAR SECOND SEMESTER

SUPPLEMENTARY EXAMINATION

FOR THE DEGREE OF MASTER OF SCIENCE IN PURE **MATHEMATICS**

COURSE CODE:

MAT811

COURSE TITLE: ABSTRACT INTEGRATION I

DATE: 19/7/2021

TIME: 9 AM - 12 NOONJ

INSTRUCTIONS TO CANDIDATES

Answer Any other THREE Questions

TIME: 3 Hours

QUESTION ONE (20 MARKS)

- a) Show that given $f: X \to Y$ and \mathcal{T} is a σ -ring of subsets of Y, then the class of all sets of the form $f^{-1}(B)$ where Bis in \mathcal{T} is a σ -ring of subsets of X (5marks)
- b)
- i. Show that given R is a σ -ring and μ is an extended real valued set function on R which is positive, countably additive ad satisfies the condition $\mu(\phi) = 0$, then μ is a measure (5marks)
- ii. Show that given μ is a σ -finite measure on a ring R, then there exists a unique measure $\bar{\mu}$ on G(R) which extends μ . Moreover, $\bar{\mu}$ is σ -finite and $\bar{\mu}(E) = \mu^*(E)$ for all E in G(R) (5 marks)
- c) Show that given $\alpha_i \uparrow \alpha$ and $\beta_i \uparrow \beta$ then

i. $\alpha_i + \beta_i \uparrow \alpha + \beta$

(3marks)

ii. $\alpha_i \beta_i \uparrow \alpha \beta$

(2marks)

QUESTION TWO (20 MARKS)

a) Define the following terms

(4marks)

- i. Measurable space
- ii. Locally measurable subset of space X
- iii. Measurable function
- iv. Characteristic function
- v. Bored measurable
- b)
- i. Show that if f is a measurable function and $\varphi \colon \mathbb{R} \to \mathbb{R}$ is a Bored measurable function such that $\varphi(0) = 0$, then the composite function $\varphi \circ f$ is also measurable (4marks)
- ii. Show that given f_n is a sequence of measurable functions such that $f_n(x)$ is a bounded sequence, for each x then the functions $\lim \inf f_n$ and $\lim \sup f_n$ are also measurable (4marks)

c)

- i. Show that if f is a measurable function, c is a real valued number and c > 0, then $f \cap c$ is a measurable function (4marks)
- ii. Show that if f is a measurable function, there exists a sequence of simple functions f_n such that f_n converges to f pointwise on X, that is $f_n(x) \to f(x)$ for each x in X. If moreover $f \ge 0$, show that one can make $0 \le f_n \uparrow f$

(4marks)

QUESTION THREE (20 MARKS)

a) Define the following terms

(5marks)

- i. Measure space
- ii. Limit superior of a sequence of sets
- iii. Limit inferior of a sequence of sets
- iv. Contraction
- v. Almost everywhere concept

b)

- i. Given that $f_n \to f$ a.e show that f_n is fundamental a.e (3marks)
- ii. Given that $f_n \to f$ a.e and $f_n \to g$ a.e, then f = g a.e (3marks)
- iii. Given that $f_n \to f$ a.e and g is a ral valued function such that f = g a.e then $f_n \to g$ a,e (3marks)

c)

i. State the Egoroff's theorem

(3marks)

ii. State the Riesz-weyl theorem

(3marks)

QUESTION FOUR (20 MARKS)

a) Define the following terms

(4marks)

- i. Simple function
- ii. Integrable function
- iii. Indefinite integral
- iv. Mean convergence
- b) Show that given f_n is a sequence of integrable functions such that $f_n \leq f_{n+1}$ a.e (n=1,2,...) and $\int f_n \ du$ is bounded, then there exists an integrable function f such that $f_n \uparrow f$ a.e. Necessarily, $\int f_n \ du \uparrow \int f \ du$. Indeed, if f is any measurable function such that $f_n \to h$ a.e then h = f a.e, h is integrable and $\int f_n \ du \uparrow \int h \ du$ (10marks)

c) Given f_n , f, g_n , g are integrable functions, c is a real number and A is a locally measurable set. Assume that $f_n \to f$ in mean and $g_n \to g$ in mean. Show that

(6marks)

- i. $cf_n \to cf$ in mean
- ii. $f_n + g_n \to f + g$ in mean
- iii. $|f_n| \to |f|$ in mean
- iv. $f_n \cup g_n \to f \cup g$ in mean and $f_n \cap g_n \to f \cap g$ in mean
- v. $f_n^+ \to f^+$ in mean and $f_n^- \to f^-$ in mean
- vi. $\chi_A f_n \to \chi_A f$ in mean

QUESTION FIVE (20 MARKS)

- a) Show that if f_n is a sequence of integrable functions such that $f_n \ge 0$ a.e and $\lim\inf \int f_n \, du < \infty$ then there exists an integrable function f such that $f = \lim\inf f_n$ a.e and one has $\int f_n \, du \le \liminf\int f_n \, du$ (6marks)
- b)
- i. Show that if $f, g \in \mathcal{L}^2$ then $(f|g) \le ||f||_2 ||g||_2$ (3marks)
- ii. Show that if $f, g \in \mathcal{L}^2$ then $|| f + g ||_2 \le || f ||_2 + || g ||_2$ (3marks)
- iii. Given that $f_n \to f$ a.e show that f_n is fundamental a.e (3marks)
- iv. Given that $f_n \to f$ a.e and $f_n \to g$ a.e, then f = g a.e (3marks)
- c) Given that f_n is a 2-mean fundamental sequence in \mathcal{L}^2 show that there exists a function f in \mathcal{L}^2 such that $f_n \to f$ in 2-mean (8marks)