



(Knowledge for Development)

# KIBABII UNIVERSITY

UNIVERSITY EXAMINATIONS
2019/2020 ACADEMIC YEAR
SECOND YEAR FIRST SEMESTER
SPECIAL/ SUPPLEMENTARY EXAMINATION
FOR THE DEGREE OF BACHELOR OF SCIENCE

COURSE CODE: STA 210

COURSE TITLE: PROBABILITY AND STATISTICS

DATE: 05/02/2021 TIME: 11 AM -1 PM

#### INSTRUCTIONS TO CANDIDATES

Answer Question One and Any other TWO Questions

TIME: 2 Hours

This Paper Consists of 4 Printed Pages. Please Turn Over.

#### **QUESTION ONE (30 MARKS)**

a) Explain the meaning of the following terms

(2 mark) Moment generating function of random variable

(ii) Characteristics function of random variable (2marks)

b) If X is a discrete random variable and b is constant.

Showthat E(bX) = bE(X)(2 marks)

Suppose the probability mass function of X is (ii)

|      | 4.4  | 0    |      |     | The state of the s |          |  |
|------|------|------|------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|
|      | f(x) | 0.2  |      | 0.1 | 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.3      |  |
| Find |      |      |      |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |  |
|      |      | (I)  | E(2) |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1 mark) |  |
|      |      | (TT) | -    |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0 1 )   |  |

(2 marks) (II)E(X)

2

E(2X) (1 mark) (III)

 $E(X^2)$ (2 marks) (IV)

 $E(2x + 3X^2)$ (1 marks)

c) A random variable X has pdf

$$f(x) = \begin{cases} \theta x, & 0 \le x \le 1 \\ 0 & elsewhere \end{cases}$$

(2marks) (i) Find?

Obtain the distribution functions F(x) and give its sketch (3 marks) (ii)

(3 marks) (iii) Find the variance of X?

Workout  $p\left(X \leq \frac{1}{2}\right)$ (2 marks) (iv)

- d) The total cost X of completing a project is assumed to follow a normal distribution with mean \$850,000 and a standard deviation of \$170,000. The revenue, R, promised to the contractor is \$1,000,000.
  - The contract will be profitable if revenue exceeds total cost. What is the probability that (i) the contract will be profitable to the contractor?
  - (ii) Suppose the contractor has the opportunity to renegotiate the contract. What value of R should the contractor strive for in order to have a 0.99 probability of making profit? (3 marks)

e) If  $X \sim B(50, 0.35)$ . Find

(i) Probability of failure. (1 mark)

The number of experimental outcomes providing exactly one success in 50 trials. (ii) (1 marks)

### **QUESTION TWO (20 MARKS)**

a) A random variable X is known to have a distribution with probability density function

$$f(x) = \begin{cases} 8x^{\alpha}, & 0 \le x \le 1\\ 0 & elsewhere \end{cases}$$

- (i) Which type of random variable is X? (1 mark)
   (ii) Find the constant α (2 marks)
- (ii) Find the constant  $\alpha$  (2 marks) (iii) What is the variance of X? (5 marks)
- b) A random variable X follows a Binomial distribution.
  - (i) Give the pdf of X (1 mark)
  - (ii) Obtain the mgf of the distribution of X and hence compute the mean (8 marks)
- c) It is known that all items produced by a certain machine will be defective with probability 0.1, independently of each other. What is the probability that in a sample of three items, at most one will be defective? (3 marks)

### **QUESTION THREE (20 MARKS)**

a) A random variable X has a poison distribution such that

$$p(x = 2) = \frac{2}{3}p(x = 1).$$

Find

- (i) p(x = 0) (4 marks) (ii) Find the moment generating function of X (4 marks)
- b) Given that E(5 + X) = 15 and  $E(5 + X)^2 = 226$ , determine
  - (i) Var(5+X) (1 marks) (ii) E(X) (2 marks) (iii) Var(2X) (3 marks)
- c) If X equal the birth weight (in grams) of babies in the Singapore and assuming the distribution of X is  $N(14, 2.5^2)$ , find
  - (i)  $p(X \ge 18)$  (2 marks) (ii)  $P(X \le 8)$  (2 marks)
  - (iii)  $P(12 \le X \le 15)$  (2 marks)

### **QUESTION FOUR (20 MARKS)**

a) If a random variable of X has pdf

$$f(x) = \begin{cases} cx^2, & 0 < x < 1\\ 0 & elsewhere \end{cases}$$

- (i) Find c
   (ii) Obtain of the mean of X
   (iii) Find the variance of X
   (iv) Find the cumulative distribution function of X
   (2 marks)
   (3 marks)
   (2 marks)
- b) Identify the following variables as either discrete or continuous

(i) Distance from school to home (1 mark)
(ii) Own Cow or Sheep
(iii) Recorded values of temperature of a place (1 mark)

c) A random variable X has the moment generating function

$$M_X(t) = \frac{1}{3} + \frac{2}{3}e^t$$

(i) State the probability distribution of X? (2marks) (ii) Show that  $M'_X(0) - [M''_X(0)]^2 = Var(X)$  (5 marks)

# QUESTION FIVE (20 MARKS)

a) If X is a discrete random variable with pdf f(x) and a is a constant, show that E(7 + aX) = 7 + aE(X) (3 marks)

b) If a random variable X has cumulative distribution function given as

$$F(x) = -e^{-\beta x} + 1, 0 < x < \infty, \beta > 0$$

(i) Sketch F(x) (2 marks) (ii) Obtain the pdf of X (1 mark) (iii) Identify the distribution of X

(iii) Identify the distribution of X
 (iv) Obtain moment generating function of X and hence find the mean and Variance (10 marks)
 of X

c) Suppose that the probability of female birth is 0.3. If 10 individuals are selected in this population. What is the probability of getting 6 women? (3 marks)